def on_epoch_end(self, iternum, GAN, logs={}): out = io.BytesIO() val = None if self.title == 'genimg': plots.save_img_grid(GAN.genrtor, GAN.noise_vect_len, fname=out, Xterm=False, scale=GAN.cscale) elif self.title == 'pixhist': val = plots.pix_intensity_hist(GAN.val_imgs, GAN.genrtor, GAN.noise_vect_len, scaling=GAN.datascale, fname=out, Xterm=False) out.seek(0) image = _filebuf_to_tf_summary_img(out, self.title) summary = tf.Summary( value=[tf.Summary.Value(tag=self.title, image=image)]) writer = tf.summary.FileWriter(GAN.expDir + 'logs/imgs') writer.add_summary(summary, iternum) writer.close() out.close() return val
run = './expts/' + config + '/run' + runId + '/' modelpath = run + 'models/g_cosmo_best.h5' if not os.path.isfile(modelpath): print("Error: File %s with pre-trained weights could not be found") sys.exit() GAN = GANbuild.DCGAN(config, run) GAN.genrtor.load_weights(modelpath) # Plot generated images plots.save_img_grid(GAN.genrtor, GAN.noise_vect_len, GAN.invtransform, GAN.C_axis, Xterm=True, scale=GAN.cscale, multichannel=GAN.multichannel) # Plot pixel intensity histogram and calculate chi-square score chi = plots.pix_intensity_hist(GAN.val_imgs, GAN.genrtor, GAN.noise_vect_len, GAN.invtransform, GAN.C_axis, multichannel=GAN.multichannel, Xterm=True) # Plot power spectrum and calculate chi-square score pschi = plots.pspect(GAN.val_imgs,
#z = Input(shape=(1,noise_vect_len)) #genimg = genrtor(z) #discrim.trainable = False #decision = discrim(genimg) #stacked = Model(z, decision) #stacked.compile(loss=lossfn, optimizer=keras.optimizers.Adam(lr=0.0002, beta_1=0.5)) noise_vects1 = np.random.normal(loc=0.0, size=(10, 1, noise_vect_len)) reals = real_imgs[:10, :, :, :] fakes = genrtor.predict(noise_vects1) #plots.save_realimg_grid(real_imgs, Xterm=True, scale='lin') #plots.save_img_grid(genrtor, noise_vect_len, 0, Xterm=True, scale='pwr') plots.save_img_grid(genrtor, noise_vect_len, 0, Xterm=True, scale='pwr') plots.save_img_grid(genrtor, noise_vect_len, 0, Xterm=True, scale='pwr') #wdw = [-1.1, 1.1, 1e-4, 3e4] chi = plots.pix_intensity_hist(real_imgs, genrtor, noise_vect_len, 'lin', Xterm=True) plt.show() print('Chi=%f' % chi) #noise_vects1 = np.random.normal(loc=0.0, size=(127000, 1, noise_vect_len)) #fakes = genrtor.predict(noise_vects1) #np.save('./data/gen/fullcrop.npy', fakes) ''' print(discrim.predict(reals))