コード例 #1
0
ファイル: reconstruction.py プロジェクト: kpj/OsciPy
def plot_reconstruction_result(res):
    """ Plot original and reconstructed graph plus time series
    """
    fig = plt.figure(figsize=(32, 8))
    gs = mpl.gridspec.GridSpec(1, 4)

    # original graph
    orig_ax = plt.subplot(gs[0])
    plot_graph(nx.from_numpy_matrix(res.A.orig), orig_ax)
    orig_ax.set_title('Original graph')

    # time series
    ax = plt.subplot(gs[1:3])
    sns.tsplot(
        time='time', value='theta',
        unit='source', condition='oscillator',
        estimator=np.mean, legend=False,
        data=compute_solutions(res),
        ax=ax)
    ax.set_title(r'$A_{{err}} = {:.2}, B_{{err}} = {:.2}$'.format(*compute_error(res)))

    # reconstructed graph
    rec_ax = plt.subplot(gs[3])
    tmp = res.A.rec
    tmp[abs(tmp) < 1e-1] = 0
    plot_graph(nx.from_numpy_matrix(tmp), rec_ax)
    rec_ax.set_title('Reconstructed graph')

    plt.tight_layout()
    save(fig, 'reconstruction_overview')
コード例 #2
0
ファイル: reconstruction.py プロジェクト: kpj/OsciPy
def plot_reconstruction_result(res):
    """ Plot original and reconstructed graph plus time series
    """
    fig = plt.figure(figsize=(32, 8))
    gs = mpl.gridspec.GridSpec(1, 4)

    # original graph
    orig_ax = plt.subplot(gs[0])
    plot_graph(nx.from_numpy_matrix(res.A.orig), orig_ax)
    orig_ax.set_title('Original graph')

    # time series
    ax = plt.subplot(gs[1:3])
    sns.tsplot(time='time',
               value='theta',
               unit='source',
               condition='oscillator',
               estimator=np.mean,
               legend=False,
               data=compute_solutions(res),
               ax=ax)
    ax.set_title(
        r'$A_{{err}} = {:.2}, B_{{err}} = {:.2}$'.format(*compute_error(res)))

    # reconstructed graph
    rec_ax = plt.subplot(gs[3])
    tmp = res.A.rec
    tmp[abs(tmp) < 1e-1] = 0
    plot_graph(nx.from_numpy_matrix(tmp), rec_ax)
    rec_ax.set_title('Reconstructed graph')

    plt.tight_layout()
    save(fig, 'reconstruction_overview')
コード例 #3
0
ファイル: pretraga_main.py プロジェクト: MihailoIsakov/SMUVI
def input_graph():
    global graph
    from sphereofinfluence import SoIGraph
    graph = SoIGraph.randomize(0, 100, 100)

    plotter.start_gui(graph)

    # plotter.show()
    plotter.plt.ion()
    plotter.plot_graph(graph)
    plotter.plot_arrows(graph)
    plotter.show()
    # breadth_first_search(graph)
    # depth_first_search(graph)
    dijkstra(graph)
コード例 #4
0
ファイル: project1.py プロジェクト: jennaon/AA228Student.jl
def compute(infile, outfile):
    start = time.time()
    df = pd.read_csv(infile)
    N, n = df.shape
    G = nx.gn_graph(n)
    #==========================================#
    #to verify values
    # G = nx.DiGraph()
    # G_new, G_alt = create_random_graph(n, G)
    #==========================================#

    bayes = BayesScore(G, df)  # This is inside compute
    G_opt, score_opt = local_search(bayes, G, df)
    end = time.time()
    timer = end - start
    print('total time: %.2', timer)

    # G_opt = G; score_opt = 100;
    G_opt = nx.relabel_nodes(G_opt, bayes.idx2node)

    # plot_graph(G_opt, show=True)
    # pdb.set_trace()

    print('best final score:', score_opt)
    length = df.shape[1]

    d = bayes.node2idx
    node_list = sorted(d, key=d.get)
    # parents_values = [data[parent]-1 for parent in parents]
    # pdb.set_trace()

    timestamp = str(int(time.time()))
    new_dir = str("./out_") + timestamp
    os.mkdir(new_dir)

    filename = new_dir + ('/') + outfile
    write_gph(G_opt, bayes.node2idx, filename)

    fig = plot_graph(G_opt)
    title = 'score = %.2f, time taken = %.2f (s)' % (score_opt, timer)
    plt.title(title)
    # new_dir = str("./out_")+str(int(time.time()) )

    figname = new_dir + ('/') + (infile[:2]) + ('.png')
    plt.savefig(figname)
コード例 #5
0
def main():
    #call classifier for an svm
    clf = classifier("SVM")

    #call train for an svm
    result_clf = clf.train()

    #call test for an svm
    svm_stats = clf.test(result_clf)

    #create a dataframe object with the results from testing the svm
    df = pd.DataFrame.from_dict(svm_stats)

    #call classifier for KNN, train, test, and append the results to the dataframe
    clf = classifier("KNN")
    result_clf = clf.train()
    knn_stats = clf.test(result_clf)
    df = df.append(knn_stats, ignore_index=True)

    #call classifier for a neural net, train, test, and append results to the dataframe
    clf = classifier("ANN")
    result_clf = clf.train()
    ann_stats = clf.test(result_clf)
    df = df.append(ann_stats, ignore_index=True)

    #call classifier for a decision tree, train, test, and append results to the dataframe
    clf = classifier('DT')
    result_clf = clf.train()
    dt_stats = clf.test(result_clf)
    df = df.append(dt_stats, ignore_index=True)

    #call classifier for an adaboosted decision tree, train, test, and append results to dateframe
    clf = classifier('Boost')
    result_clf = clf.train()
    boost_stats = clf.test(result_clf)
    df = df.append(boost_stats, ignore_index=True)

    # Create plot_graph object with df to plot relevant graphs

    grapher = plot_graph(df)

    grapher.plot_graphs()
    scores_global_agent = []
    scores=[]
    steps = []
    for runs in range(1, 50000000):
        for (i, agent) in enumerate(agents):
            # training each agent serially (needs to be parallelized)
            agent.train(FREQUENCY_OF_UPDATE)
            scores.append(test_agent(test_env, agent)) #Cartpole
            # scores.append(501+test_agent(test_env, agent)) #Acrobot
            # scores.append(201+test_agent(test_env, agent)) #Mountain Car
        single_agent.train(FREQUENCY_OF_UPDATE)

        global_agent = combine_agents_reward_based(global_agent, agents, scores)
        # global_agent = combine_agents(global_agent, agents)
        scores=[]
        agents = distribute_agents(global_agent, agents)


        if(runs%5==0):
            scores_global_agent.append(test_agent(test_env, global_agent))
            scores_single_agent.append(test_agent(test_env, single_agent))
            steps.append(single_agent.step_cnt)

            np.savetxt('arrays/scores_global_agent_'+ENV_NAME+'.csv', np.array(scores_global_agent))
            np.savetxt('arrays/scores_single_agent_'+ENV_NAME+'.csv', np.array(scores_single_agent))
            np.savetxt('arrays/steps_'+ENV_NAME+'.csv', np.array(steps))
            ###############PLOT##################
            plot_graph(scores_global_agent, scores_single_agent, steps, ENV_NAME, NO_OF_TRAINERS, ROLLING=20)


コード例 #7
0
model.compile(loss='mse', optimizer='adam', metrics=['mae', 'mse'])

model.summary()

model.fit(X_train, Y_train, epochs=1000, validation_split=0.2, callbacks=[tb])
loss, mae, mse = model.evaluate(X_test, Y_test, verbose=0)

#predicting

input_dict = train
input_dict_x = input_dict.drop("Y", axis=1)
input_dict_y = input_dict["Y"]

predict_results = model.predict(input_dict_x)
print(predict_results)

predictions_Original = predict_results

# New Dataset
d = {'X': [7, 8, 9, 10, 11]}
df = pd.DataFrame(data=d)
predict_results = model.predict(df)

print(predict_results)

new_predections = predict_results

from plotter import plot_graph

plot_graph(train, predictions_Original, new_predections,
           "graph_{}".format(int(time.time())))