def explore_scatter(self, X): feature_cols = [ 'age', 'job', 'marital', 'education', 'default', 'loan', 'housing', 'contact', 'poutcome' ] age = X['age'] job = X['job'] marital = X['marital'] education = X['education'] housing = X['housing'] contact = X['contact'] loan = X['loan'] plot_scatter(age, job, 'Age', 'Job', 'Age vs Job') plot_scatter(marital, education, 'marital', 'education', 'marital vs education') plot_scatter(housing, contact, 'housing', 'contact', 'housing vs contact') plot_scatter(loan, education, 'loan', 'education', 'loan vs education') plot_scatter(job, marital, 'job', 'marital', 'job vs marital')
def explore_scatter(self): feature_cols = [ "fixed acidity", "residual sugar", "chlorides", "total sulfur dioxide", "density", "alcohol" ] fa = self.data['fixed acidity'] rs = self.data['residual sugar'] c = self.data['chlorides'] tso = self.data['total sulfur dioxide'] d = self.data['density'] a = self.data['alcohol'] plot_scatter(fa, rs, 'Fixed Acidity', 'Residual Sugar', 'Fixed Acidity vs Residual Sugar') plot_scatter(c, tso, 'Chlorides', 'Total Sulfur Dioxide', 'Chlorides vs total sulfur dioxide') plot_scatter(d, a, 'Density', 'Alcohol', 'Density vs Alcohol') plot_scatter(fa, a, 'Fixed Acidity', 'Alcohol', 'Fixed Acidity vs Alcohol') plot_scatter(rs, a, 'Residual Sugar', 'Alcohol', 'Residual Sugar vs Alcohol')
def main(): options = parser.parse_args() inputFile = options.inputFile df = pd.read_csv(inputFile, sep="|", index_col=COLUMNS[0]) #check_limits(df) duplicateRowsDF = df[df.duplicated()] if len(duplicateRowsDF.index) > 0: print("Warning, there are some duplicates") points = np.column_stack([df[COLUMNS[2]].values, df[COLUMNS[3]].values]) pareto_front = df.iloc[is_pareto_efficient(points, return_mask=False)] out_name = options.outputFile.split('.')[0] if options.render: plotter.plot_scatter(df[COLUMNS[3]].values, df[COLUMNS[2]].values, pareto_front=(pareto_front[COLUMNS[3]].values, pareto_front[COLUMNS[2]].values), label=str(options.mrai_type) + " MRAI experiments", xlabel="Messages transmitted", ylabel="Convergence time [s]", title="Experiments efficency", output_file_name=out_name + ".pdf") allowed_types = ["constant", "dpc", "dpc2", "reverse_dpcc"] if options.mrai_type in allowed_types: plotter.plot_messages_time_comparison( df[COLUMNS[1]].values, df[COLUMNS[2]].values, df[COLUMNS[3]].values, title="MRAI " + options.mrai_type + " performances", output_file_name=out_name + "_mrai_evolution.pdf", time_max=options.time_max, time_min=options.time_min, messages_max=options.messages_max, messages_min=options.messages_min, fs=options.font_size) plotter.plot_suppression(df[COLUMNS[1]].values, df[COLUMNS[4]].values, title="Suppression detected", output_file_name=out_name + "_suppression_evolution.pdf", sup_max=options.rfd_max, sup_min=options.rfd_min, fs=options.font_size) plotter.plot_messages_suppression_time_comparison( df[COLUMNS[1]].values, df[COLUMNS[2]].values, df[COLUMNS[3]].values, df[COLUMNS[4]].values, title="MRAI + RFD " + options.mrai_type + " performances", output_file_name=out_name + "_mrai_rfd_evolution.pdf", time_max=options.time_max, time_min=options.time_min, messages_max=options.messages_max, messages_min=options.messages_min, rfd_max=options.rfd_max, rfd_min=options.rfd_min, fs=options.font_size) plotter.plot_messages_time_comparison_error_bars( df[COLUMNS[1]].values, df[COLUMNS[2]].values, df[COLUMNS[3]].values, df[COLUMNS[6]].values, df[COLUMNS[9]].values, title="MRAI " + options.mrai_type + " performances " + "with Std deviation", output_file_name=out_name + "_mrai_evolution_std.pdf", time_max=options.time_max, time_min=options.time_min, messages_max=options.messages_max, messages_min=options.messages_min, fs=options.font_size) plotter.plot_messages_time_comparison_error_bars_alpha( df[COLUMNS[1]].values, df[COLUMNS[2]].values, df[COLUMNS[3]].values, df[COLUMNS[6]].values, df[COLUMNS[9]].values, title="MRAI " + options.mrai_type + " performances " + "with Std deviation", output_file_name=out_name + "_mrai_evolution_std_alpha.pdf", time_max=options.time_max, time_min=options.time_min, messages_max=options.messages_max, messages_min=options.messages_min, fs=options.font_size)
sys.path.append('plotter/plotting_params') params_module = importlib.import_module(args.params_file) data_params = params_module.data_params if hasattr(params_module, 'list_of_experiments'): final_list_of_experiments = params_module.list_of_experiments else: final_list_of_experiments = list_of_experiments print('final_list_experiments', final_list_of_experiments) print('data params', data_params) print('process params', params_module.processing_params) print('plot params', params_module.plot_params) if args.erase_bad_validations: validations = [ 'Town01W1Noise', 'Town02W14Noise', 'Town01W1', 'Town02W14' ] erase_wrong_plotting_summaries(args.folder, validations) #if check_csv_ground_truths # Check if the validation folders already have the plot_scatter(args.folder, final_list_of_experiments, data_params, params_module.processing_params, params_module.plot_params, out_folder=args.params_file)