classifiers = [ ("KNN", None, KNeighborsClassifier(2)), ("Linear SVM", None, SVC(kernel="linear")), ("RBF SVM", None, SVC(gamma=2, C=1)), ("DT", None, DecisionTreeClassifier(min_samples_split=1024, max_depth=20)), ("RF", None, RandomForestClassifier(n_estimators=10, min_samples_split=1024, max_depth=20)), ("AB", None, AdaBoostClassifier(random_state=13370)), #("GP ARD", ["MFCC"], gp.GaussianProcessClassifier(kernel=ard_kernel(sigma=1.2, length_scale=np.array([1]*1)))), ("GP-DP", ["MFCC", "All", "CIFE", "CFS"], gp.GaussianProcessClassifier(kernel=gp.kernels.DotProduct())) # output the confidence level and the predictive variance for the dot product (the only one that we keep in the end) # GP beats SVM in our experiment (qualitative advantages) # only keep RBF, dot product and matern on the chart # add a paragraph 'Processed Data' #1) generate the dataset with 526 features #2) the predictive variance and predictive mean (best and worst) of some vectors from the dot product. ] #classify(X_train[:,bitVec], X_dev[:,bitVec]) models_f1, models_performances = getClassifieresPerformances( classifiers, models_f1, models_performances) #models_f1, models_performances = getClassifieresPerformancesByDefinedX(classifiers, 'predict', models_f1, models_performances, newTrainX, y_bin_train, newDevX) models_f1, models_performances = addRelatedWork(models_f1, models_performances) models_f1 = sorted(models_f1, key=lambda l: l[1]) models_performances = sorted(models_performances, key=lambda l: l[1]) plot_f1(models_f1) printPerformances(models_performances)
def showPerformance(models_f1, models_performances): plot_f1(models_f1) printPerformances(models_performances)