cuda_cov = cuda.mem_alloc(4 * 4) # plt.pause(5) for i in range(u.shape[0]): print(i) if PLOT: plt.pause(0.05) ax[0].clear() ax[0].set_xlim([-5, 20]) ax[0].set_ylim([-5, 20]) plot_landmarks(ax[0], landmarks) plot_history(ax[0], real_position_history, color='green') plot_history(ax[0], predicted_position_history, color='orange') plot_particles_grey(ax[0], particles) vehicle.move_noisy(u[i]) real_position_history.append(vehicle.position) FlatParticle.predict(particles, u[i], sigmas=movement_variance, dt=1) visible_measurements = sensor.get_noisy_measurements(vehicle.position[:2]) particles = update( particles, THREADS, BLOCK_SIZE, visible_measurements, measurement_variance, cuda_particles, cuda_measurements, cuda_cov, THRESHOLD ) predicted_position_history.append(FlatParticle.get_mean_position(particles))
movement_variance = [0.03, 0.05] measurement_variance = [0.1, 0.1] for i in range(u.shape[0]): print(i) if PLOT: plt.pause(0.05) ax.clear() ax.set_xlim([0, 15]) ax.set_ylim([0, 15]) plot_landmarks(ax, landmarks) plot_history(ax, real_position_history, color='green') plot_history(ax, predicted_position_history, color='orange') plot_particles_grey(ax, particles) real_position = move_vehicle_stochastic(real_position, u[i], dt=1, sigmas=movement_variance) real_position_history.append(real_position) particles = predict(particles, u[i], sigmas=movement_variance, dt=1) z_real = [] visible_landmarks = [] landmark_indices = [] for i, landmark in enumerate(landmarks): z = get_measurement_stochastic(real_position[:2], landmark, measurement_variance)