コード例 #1
0
ファイル: table7.py プロジェクト: AndyAmmons/GenesisCode
def table8_X2Mg():

    species = [
        'He/Mg', 'C/Mg', 'N/Mg', 'O/Mg', 'Si/Mg', 'S/Mg', 'Fe/Mg', 'Ne/Mg'
    ]

    ISSpecies = [
        he2mgmedO3, c2mgmedO3, n2mgmedO3, o2mgmedO3, si2mgmedO3, s2mgmedO3,
        fe2mgmedO3, ne2mgmedO3
    ]

    CHSpecies = [
        he2mgmedO2, c2mgmedO2, n2mgmedO2, o2mgmedO2, si2mgmedO2, s2mgmedO2,
        fe2mgmedO2, ne2mgmedO2
    ]
    ISSpeed = [
        hespeedmg3, cspeedmg3, nspeedmg3, ospeedmg3, sispeedmg3, sspeedmg3,
        fespeedmg3, nespeedmg3
    ]
    CHSpeed = [
        hespeedmg2, cspeedmg2, nspeedmg2, ospeedmg2, sispeedmg2, sspeedmg2,
        fespeedmg2, nespeedmg2
    ]
    print np.dtype(hespeedmg3)

    for spec, IS, CH, speedis, speedch in zip(species, ISSpecies, CHSpecies,
                                              ISSpeed, CHSpeed):
        print np.dtype(speedis)
        print speedch
        interstream = (IS[np.where((speedis >= 425.0) & (speedis <= 575.0))])
        coronalHole = (CH[np.where((speedch >= 425.0) & (speedch <= 575.0))])

        print IS
        print CH

        ISMean = pR.geoMean(interstream)
        CHMean = pR.geoMean(coronalHole)

        isErrorHigh, N1 = pR.ErrorHigh(interstream)
        isErrorLow = pR.ErrorLow(interstream)
        chErrorHigh, N2 = pR.ErrorHigh(coronalHole)
        chErrorLow = pR.ErrorLow(coronalHole)

        N = (N1 + N2) / 2

        highFracUncert = pR.fracUncert(isErrorHigh, chErrorHigh, ISMean,
                                       CHMean, N)
        lowFracUncert = pR.fracUncert(isErrorLow, chErrorLow, ISMean, CHMean,
                                      N)
        highuncert = highFracUncert
        lowuncert = lowFracUncert

        IS2CH = pR.geoMean(interstream) / pR.geoMean(coronalHole)

        print spec + '\t' + str(np.round(IS2CH, 3)) + '\t' + '+' + str(
            np.round(highuncert, 5)) + '/' + '-' + str(np.round(lowuncert, 5))
コード例 #2
0
ファイル: table7.py プロジェクト: AndyAmmons/GenesisCode
def table7_X2H():
    species = ['He/H', 'C/H', 'N/H', 'Mg/H', 'Si/H', 'S/H', 'Fe/H', 'Ne/H']
    ISSpecies = [
        he2hmed3, c2hmed3, n2hmed3, mg2hmed3, si2hmed3, s2hmed3, fe2hmed3,
        ne2hmed3
    ]
    CHSpecies = [
        he2hmed2, c2hmed2, n2hmed2, mg2hmed2, si2hmed2, s2hmed2, fe2hmed2,
        ne2hmed2
    ]
    CMESpecies = [
        he2hmed1, c2hmed1, n2hmed1, mg2hmed1, si2hmed1, s2hmed1, fe2hmed1,
        ne2hmed1
    ]
    BulkSpecies = [
        he2hmed0, c2hmed0, n2hmed0, mg2hmed0, si2hmed0, s2hmed0, fe2hmed0,
        ne2hmed0
    ]
    #photoSpecAbund = [0.0851,0.0002692,0.00006761,0.0000398,0.0000324,0.00001318,0.000031623,0.0000851]
    photoSpecUncrt = [
        0.00196, 0.0000311, 0.0000078, 0.00000367, 0.0000224, 0.000000911,
        0.00000292, 0.0000198
    ]

    for name, IS, CH, CME, Bulk, PhotAbund, PhotUncrt in zip(
            species, ISSpecies, CHSpecies, CMESpecies, BulkSpecies,
            PhotoAbundH.values(), photoSpecUncrt):
        ISMean = pR.geoMean(IS)
        ISErrHigh, N1 = pR.ErrorHigh(IS)

        CHMean = pR.geoMean(CH)
        CHErrHigh, N2 = pR.ErrorHigh(CH)

        ISErrLow = pR.ErrorLow(IS)
        CHErrLow = pR.ErrorLow(CH)

        N = (N1 + N2) / 2

        CMEMean = pR.geoMean(CME)
        CMEstdD, _ = pR.Error(CME)
        BulkMean = pR.geoMean(Bulk)
        BulkstdD, _ = pR.Error(Bulk)

        highFracUncert = pR.fracUncert(ISErrHigh, CHErrHigh, ISMean, CHMean, N)
        lowFracUncert = pR.fracUncert(ISErrLow, CHErrLow, ISMean, CHMean, N)
        highuncert = highFracUncert
        lowuncert = lowFracUncert

        photMean = PhotAbund
        photstdD = PhotUncrt

        print (name + '\t' + str(np.round(ISMean,3)) + '\t' + str(np.round(CHMean,3)) + '\t' + str(np.round(CMEMean,3)) + '\t'\
       + str(np.round(BulkMean,3)) + '\t' + str(np.round(ISMean/CHMean,3)) + '(' + '+' + str(np.round(highuncert,5)) + '/' + '-' + str(np.round(lowuncert,5)) + ')'\
       + '\t' + str(photMean) + '(' + str(photstdD) + ')')
コード例 #3
0
ファイル: table7.py プロジェクト: AndyAmmons/GenesisCode
def table8_X2O():

    species = [
        'He/O', 'C/O', 'N/O', 'Mg/O', 'Si/O', 'S/O', 'Fe/O', 'Ne/O', 'C6/C5',
        'O7/O6', 'Frac'
    ]
    ISSpecies = [
        he2omedO3, c2omedO3, n2omedO3, mg2omedO3, si2omedO3, s2omedO3,
        fe2omedO3, ne2omedO3, c56med3, o76med3, fracmed3
    ]
    CHSpecies = [
        he2omedO2, c2omedO2, n2omedO2, mg2omedO2, si2omedO2, s2omedO2,
        fe2omedO2, ne2omedO2, c56med2, o76med2, fracmed2
    ]
    ISSpeed = [
        hespeed3, cspeed3, nspeed3, mgspeed3, sispeed3, sspeed3, fespeed3,
        nespeed3, c56speed3, o76speed3, fracspeed3
    ]
    CHSpeed = [
        hespeed2, cspeed2, nspeed2, mgspeed2, sispeed2, sspeed2, fespeed2,
        nespeed2, c56speed2, o76speed2, fracspeed2
    ]

    for spec, IS, CH, speedis, speedch in zip(species, ISSpecies, CHSpecies,
                                              ISSpeed, CHSpeed):

        interstream = (IS[np.where((speedis >= 425.0) & (speedis <= 575.0))])
        coronalHole = (CH[np.where((speedch >= 425.0) & (speedch <= 575.0))])

        ISMean = pR.geoMean(interstream)
        CHMean = pR.geoMean(coronalHole)

        isErrorHigh, N1 = pR.ErrorHigh(interstream)
        isErrorLow = pR.ErrorLow(interstream)
        chErrorHigh, N2 = pR.ErrorHigh(coronalHole)
        chErrorLow = pR.ErrorLow(coronalHole)

        N = (N1 + N2) / 2

        highFracUncert = pR.fracUncert(isErrorHigh, chErrorHigh, ISMean,
                                       CHMean, N)
        lowFracUncert = pR.fracUncert(isErrorLow, chErrorLow, ISMean, CHMean,
                                      N)
        highuncert = highFracUncert
        lowuncert = lowFracUncert

        IS2CH = pR.geoMean(interstream) / pR.geoMean(coronalHole)

        print spec + '\t' + str(np.round(IS2CH, 3)) + '\t' + '+' + str(
            np.round(highuncert, 5)) + '/' + '-' + str(np.round(lowuncert, 5))
コード例 #4
0
ファイル: table7.py プロジェクト: AndyAmmons/GenesisCode
def table7_X2Mg():

    species = [
        'He/Mg', 'C/Mg', 'N/Mg', 'O/Mg', 'Si/Mg', 'S/Mg', 'Fe/Mg', 'Ne/Mg'
    ]

    ISSpecies = [
        he2mgmedO3, c2mgmedO3, n2mgmedO3, o2mgmedO3, si2mgmedO3, s2mgmedO3,
        fe2mgmedO3, ne2mgmedO3
    ]
    CHSpecies = [
        he2mgmedO2, c2mgmedO2, n2mgmedO2, o2mgmedO2, si2mgmedO2, s2mgmedO2,
        fe2mgmedO2, ne2mgmedO2
    ]
    CMESpecies = [
        he2mgmedO1, c2mgmedO1, n2mgmedO1, o2mgmedO1, si2mgmedO1, s2mgmedO1,
        fe2mgmedO1, ne2mgmedO1
    ]
    BulkSpecies = [
        he2mgmedO0, c2mgmedO0, n2mgmedO0, o2mgmedO0, si2mgmedO0, s2mgmedO0,
        fe2mgmedO0, ne2mgmedO0
    ]
    PhotoAbundMg = {
        'he2mg': 2140.0,
        'c2mg': 6.76,
        'n2mg': 1.7,
        'ne2mg': 2.14,
        'mg2mg': 1.0,
        'si2mg': 0.813,
        's2mg': 0.331,
        'fe2mg': 0.794
    }
    photoSpecUncrt = [49.2, 0.780, 0.196, 1.42, 0.0562, 0.0229, 0.0733, 0.497]

    for name, IS, CH, CME, Bulk, PhotAbund, PhotUncrt in zip(
            species, ISSpecies, CHSpecies, CMESpecies, BulkSpecies,
            PhotoAbundMg.values(), photoSpecUncrt):
        ISMean = pR.geoMean(IS)
        ISErrHigh, N1 = pR.ErrorHigh(IS)

        CHMean = pR.geoMean(CH)
        CHErrHigh, N2 = pR.ErrorHigh(CH)

        ISErrLow = pR.ErrorLow(IS)
        CHErrLow = pR.ErrorLow(CH)

        N = (N1 + N2) / 2

        CMEMean = pR.geoMean(CME)
        CMEstdD, _ = pR.Error(CME)
        BulkMean = pR.geoMean(Bulk)
        BulkstdD, _ = pR.Error(Bulk)

        highFracUncert = pR.fracUncert(ISErrHigh, CHErrHigh, ISMean, CHMean, N)
        lowFracUncert = pR.fracUncert(ISErrLow, CHErrLow, ISMean, CHMean, N)
        highuncert = highFracUncert
        lowuncert = lowFracUncert

        photMean = PhotAbund
        photstdD = PhotUncrt

        print (name + '\t' + str(np.round(ISMean,3)) + '\t' + str(np.round(CHMean,3)) + '\t' + str(np.round(CMEMean,3)) + '\t'\
       + str(np.round(BulkMean,3)) + '\t' + str(np.round(ISMean/CHMean,3)) + '(' + '+' + str(np.round(highuncert,5)) + '/' + '-' + str(np.round(lowuncert,5)) + ')'\
       + '\t' + str(photMean) + '(' + str(photstdD) + ')')
コード例 #5
0
ファイル: table7.py プロジェクト: AndyAmmons/GenesisCode
def table7_X2O():

    species = [
        'He/O', 'C/O', 'N/O', 'Mg/O', 'Si/O', 'S/O', 'Fe/O', 'Ne/O', 'C6/C5',
        'O7/O6', 'Frac'
    ]
    ISSpecies = [
        he2omedO3, c2omedO3, n2omedO3, mg2omedO3, si2omedO3, s2omedO3,
        fe2omedO3, ne2omedO3, c56med3, o76med3, fracmed3
    ]
    CHSpecies = [
        he2omedO2, c2omedO2, n2omedO2, mg2omedO2, si2omedO2, s2omedO2,
        fe2omedO2, ne2omedO2, c56med2, o76med2, fracmed2
    ]
    CMESpecies = [
        he2omedO1, c2omedO1, n2omedO1, mg2omedO1, si2omedO1, s2omedO1,
        fe2omedO1, ne2omedO1, c56med1, o76med1, fracmed1
    ]
    BulkSpecies = [
        he2omedO0, c2omedO0, n2omedO0, mg2omedO0, si2omedO0, s2omedO0,
        fe2omedO0, ne2omedO0, c56med0, o76med0, fracmed0
    ]
    PhotoAbundO = [
        174.0, 0.550, 0.138, 0.174, 0.0813, 0.0661, 0.0269, 0.0646, '-', '-',
        '-'
    ]
    photoSpecUncrt = [
        4.0, 0.0634, 0.0159, 0.0075, 0.00457, 0.00186, 0.00596, 0.0404, '--',
        '--', '--'
    ]

    for name, IS, CH, CME, Bulk, PhotAbund, PhotUncrt in zip(
            species, ISSpecies, CHSpecies, CMESpecies, BulkSpecies,
            PhotoAbundO, photoSpecUncrt):
        ISMean = pR.geoMean(IS)
        ISErrHigh, N1 = pR.ErrorHigh(IS)

        CHMean = pR.geoMean(CH)
        CHErrHigh, N2 = pR.ErrorHigh(CH)

        ISErrLow = pR.ErrorLow(IS)
        CHErrLow = pR.ErrorLow(CH)

        N = (N1 + N2) / 2

        CMEMean = pR.geoMean(CME)
        #CMEstdD,_ = pR.stdDev(CME)
        BulkMean = pR.geoMean(Bulk)
        #BulkstdD,_ = pR.stdDev(Bulk)

        highFracUncert = pR.fracUncert(ISErrHigh, CHErrHigh, ISMean, CHMean, N)
        lowFracUncert = pR.fracUncert(ISErrLow, CHErrLow, ISMean, CHMean, N)
        highuncert = highFracUncert
        lowuncert = lowFracUncert
        #errorInMean = uncert/np.sqrt(N)

        photMean = PhotAbund
        photstdD = PhotUncrt


        print (name + '\t' + str(np.round(ISMean,3)) + '\t' + str(np.round(CHMean,3)) + '\t' + str(np.round(CMEMean,3)) + '\t'\
       + str(np.round(BulkMean,3)) + '\t' + str(np.round(ISMean/CHMean,3)) + '(' + '+' + str(np.round(highuncert,5)) + '/' + '-' + str(np.round(lowuncert,5)) + ')'\
       + '\t' + str(photMean) + '(' + str(photstdD) + ')')
コード例 #6
0
def histWRanges(flagnum, fluence, dataLim, speed=np.arange(200, 1825, 25)):
    '''returns the minimum, average, and maximum variances of fluence ratios
    per speed bin (200km/s - 800km/s)
    
    INPUTS:
        speed   - wind speed array to select ranges of data against.
        flagnum - regime number for species (1:CME, 2:CH, 3:IS, 0:bulk)
        fluence - name of species
        dataLim - scalar limit for purity of data ranges to be analyzed
    '''
    lower = []
    upper = []
    ratiomean = []
    xspeed = []

    if fluence == 'mg2o':
        for i in range(1, len(speed)):
            ind = np.where((regime['v_p'] >= speed[i - 1] - 12.5)
                           & (regime['v_p'] <= speed[i] - 12.5)
                           & (regime['flag'] == flagnum)
                           & (regime['v_p'] != np.inf))

            var = np.array(sorted(abundn[ind]['mg2o']))
            var = 1.0 / var

            if (np.size(var) != 0) & (len(var) >= dataLim):
                xspeed.append(np.average(regime['v_p'][ind]))

                try:
                    upp = fracs([var[int(len(var) * 0.90)]], name=None)
                    low = fracs([var[int(len(var) * 0.10)]], name=None)
                    med = pR.geoMean(fracs(var, name=fluence))
                    lower.append(med - low)
                    upper.append(upp - med)
                    ratiomean.append(pR.geoMean(fracs(var, name=fluence)))
                    # xspeed.append(np.average(regime['v_p'][np.where()]))
                except ValueError:
                    pass

    elif fluence == 'o76':

        for i in range(1, len(speed)):
            ind = np.where((regime['v_p'] >= speed[i - 1] - 12.5)
                           & (regime['v_p'] <= speed[i] - 12.5)
                           & (regime['flag'] == flagnum))
            var = sorted(abundn[ind][fluence])
            #xspeed = sorted()
            if (np.size(var) != 0) & (len(var) >= dataLim):
                xspeed.append(np.average(regime['v_p'][ind]))

                try:
                    upp = fracs([var[int(len(var) * 0.90)]], name=None)
                    low = fracs([var[int(len(var) * 0.10)]], name=None)
                    med = pR.geoMean(fracs(var, name=fluence))
                    lower.append(med - low)
                    upper.append(upp - med)
                    ratiomean.append(pR.geoMean(fracs(var, name=fluence)))
                    # xspeed.append(np.average(regime['v_p'][np.where()]))
                except ValueError:
                    pass

    else:

        for i in range(1, len(speed)):
            ind = np.where((regime['v_p'] >= speed[i - 1] - 12.5)
                           & (regime['v_p'] <= speed[i] - 12.5)
                           & (regime['flag'] == flagnum))
            var = sorted(abundn[ind][fluence] / abundn[ind]['mg2o'])
            #xspeed = sorted()
            if (np.size(var) != 0) & (len(var) >= dataLim):
                xspeed.append(np.average(regime['v_p'][ind]))

                try:
                    upp = fracs([var[int(len(var) * 0.90)]], name=None)
                    low = fracs([var[int(len(var) * 0.10)]], name=None)
                    med = pR.geoMean(fracs(var, name=fluence))
                    lower.append(med - low)
                    upper.append(upp - med)
                    ratiomean.append(pR.geoMean(fracs(var, name=fluence)))
                    # xspeed.append(np.average(regime['v_p'][np.where()]))
                except ValueError:
                    pass
    return lower, upper, ratiomean, np.array(xspeed)