コード例 #1
0
ファイル: scorenorm.py プロジェクト: whaozl/ibeis
def compare_featscores():
    """
    CommandLine:

        ibeis --tf compare_featscores  --db PZ_MTEST \
            --nfscfg :disttype=[L2_sift,lnbnn],top_percent=[None,.5,.1] -a timectrl \
            -p default:K=[1,2],normalizer_rule=name \
            --save featscore{db}.png --figsize=13,20 --diskshow

        ibeis --tf compare_featscores  --db PZ_MTEST \
            --nfscfg :disttype=[L2_sift,normdist,lnbnn],top_percent=[None,.5] -a timectrl \
            -p default:K=[1],normalizer_rule=name,sv_on=[True,False] \
            --save featscore{db}.png --figsize=13,10 --diskshow

        ibeis --tf compare_featscores --nfscfg :disttype=[L2_sift,normdist,lnbnn] \
            -a timectrl -p default:K=1,normalizer_rule=name --db PZ_Master1 \
            --save featscore{db}.png  --figsize=13,13 --diskshow

        ibeis --tf compare_featscores --nfscfg :disttype=[L2_sift,normdist,lnbnn] \
            -a timectrl -p default:K=1,normalizer_rule=name --db GZ_ALL \
            --save featscore{db}.png  --figsize=13,13 --diskshow

        ibeis --tf compare_featscores  --db GIRM_Master1 \
            --nfscfg ':disttype=fg,L2_sift,normdist,lnbnn' \
            -a timectrl -p default:K=1,normalizer_rule=name \
            --save featscore{db}.png  --figsize=13,13

        ibeis --tf compare_featscores --nfscfg :disttype=[L2_sift,normdist,lnbnn] \
            -a timectrl -p default:K=[1,2,3],normalizer_rule=name,sv_on=False \
            --db PZ_Master1 --save featscore{db}.png  \
                --dpi=128 --figsize=15,20 --diskshow

        ibeis --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db PZ_MTEST
        ibeis --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db GZ_ALL
        ibeis --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db PZ_Master1
        ibeis --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db GIRM_Master1

        ibeis --tf compare_featscores  --db PZ_MTEST \
            --nfscfg :disttype=[L2_sift,normdist,lnbnn],top_percent=[None,.5,.2] -a timectrl \
            -p default:K=[1],normalizer_rule=name \
            --save featscore{db}.png --figsize=13,20 --diskshow

        ibeis --tf compare_featscores  --db PZ_MTEST \
            --nfscfg :disttype=[L2_sift,normdist,lnbnn],top_percent=[None,.5,.2] -a timectrl \
            -p default:K=[1],normalizer_rule=name \
            --save featscore{db}.png --figsize=13,20 --diskshow

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.algo.hots.scorenorm import *  # NOQA
        >>> result = compare_featscores()
        >>> print(result)
        >>> ut.quit_if_noshow()
        >>> import plottool as pt
        >>> ut.show_if_requested()
    """
    import plottool as pt
    import ibeis
    nfs_cfg_list = NormFeatScoreConfig.from_argv_cfgs()
    learnkw = {}
    ibs, testres = ibeis.testdata_expts(
        defaultdb='PZ_MTEST', a=['default'], p=['default:K=1'])
    print('nfs_cfg_list = ' + ut.repr3(nfs_cfg_list))

    encoder_list = []
    lbl_list = []

    varied_nfs_lbls = ut.get_varied_cfg_lbls(nfs_cfg_list)
    varied_qreq_lbls = ut.get_varied_cfg_lbls(testres.cfgdict_list)
    #varies_qreq_lbls

    #func = ut.cached_func(cache_dir='.')(learn_featscore_normalizer)
    for datakw, nlbl in zip(nfs_cfg_list, varied_nfs_lbls):
        for qreq_, qlbl in zip(testres.cfgx2_qreq_, varied_qreq_lbls):
            lbl = qlbl + ' ' + nlbl
            cfgstr = '_'.join([datakw.get_cfgstr(), qreq_.get_full_cfgstr()])
            try:
                encoder = vt.ScoreNormalizer()
                encoder.load(cfgstr=cfgstr)
            except IOError:
                print('datakw = %r' % (datakw,))
                encoder = learn_featscore_normalizer(qreq_, datakw, learnkw)
                encoder.save(cfgstr=cfgstr)
            encoder_list.append(encoder)
            lbl_list.append(lbl)

    fnum = 1
    # next_pnum = pt.make_pnum_nextgen(nRows=len(encoder_list), nCols=3)
    next_pnum = pt.make_pnum_nextgen(nRows=len(encoder_list) + 1, nCols=3, start=3)

    iconsize = 94
    if len(encoder_list) > 3:
        iconsize = 64

    icon = qreq_.ibs.get_database_icon(max_dsize=(None, iconsize), aid=qreq_.qaids[0])
    score_range = (0, .6)
    for encoder, lbl in zip(encoder_list, lbl_list):
        #encoder.visualize(figtitle=encoder.get_cfgstr(), with_prebayes=False, with_postbayes=False)
        encoder._plot_score_support_hist(fnum, pnum=next_pnum(), titlesuf='\n' + lbl, score_range=score_range)
        encoder._plot_prebayes(fnum, pnum=next_pnum())
        encoder._plot_roc(fnum, pnum=next_pnum())
        if icon is not None:
            pt.overlay_icon(icon, coords=(1, 0), bbox_alignment=(1, 0))

    nonvaried_lbl = ut.get_nonvaried_cfg_lbls(nfs_cfg_list)[0]
    figtitle = qreq_.__str__() + '\n' + nonvaried_lbl

    pt.set_figtitle(figtitle)
    pt.adjust_subplots(hspace=.5, top=.92, bottom=.08, left=.1, right=.9)
    pt.update_figsize()
    pt.plt.tight_layout()
コード例 #2
0
def show_time_distributions(ibs, unixtime_list):
    r"""
    """
    #import vtool as vt
    import plottool as pt
    unixtime_list = np.array(unixtime_list)
    num_nan = np.isnan(unixtime_list).sum()
    num_total = len(unixtime_list)
    unixtime_list = unixtime_list[~np.isnan(unixtime_list)]
    if False:
        from matplotlib import dates as mpldates
        #data_list = list(map(ut.unixtime_to_datetimeobj, unixtime_list))
        n, bins, patches = pt.plt.hist(unixtime_list, 365)
        #n_ = list(map(ut.unixtime_to_datetimeobj, n))
        #bins_ = list(map(ut.unixtime_to_datetimeobj, bins))
        pt.plt.setp(patches, 'facecolor', 'g', 'alpha', 0.75)
        ax = pt.gca()
        #ax.xaxis.set_major_locator(mpldates.YearLocator())
        #hfmt = mpldates.DateFormatter('%y/%m/%d')
        #ax.xaxis.set_major_formatter(hfmt)
        mpldates.num2date(unixtime_list)
        #pt.gcf().autofmt_xdate()
        #y = pt.plt.normpdf( bins, unixtime_list.mean(), unixtime_list.std())
        #ax.set_xticks(bins_)
        #l = pt.plt.plot(bins_, y, 'k--', linewidth=1.5)
    else:
        pt.draw_time_distribution(unixtime_list)
        #pt.draw_histogram()
        ax = pt.gca()
        ax.set_xlabel('Date')
        ax.set_title('Timestamp distribution of %s. #nan=%d/%d' % (
            ibs.get_dbname_alias(),
            num_nan, num_total))
        pt.gcf().autofmt_xdate()

        icon = ibs.get_database_icon()
        if icon is not None:
            #import matplotlib as mpl
            #import vtool as vt
            ax = pt.gca()
            # Overlay a species icon
            # http://matplotlib.org/examples/pylab_examples/demo_annotation_box.html
            #icon = vt.convert_image_list_colorspace([icon], 'RGB', 'BGR')[0]
            pt.overlay_icon(icon, coords=(0, 1), bbox_alignment=(0, 1))
            #imagebox = mpl.offsetbox.OffsetImage(icon, zoom=1.0)
            ##xy = [ax.get_xlim()[0] + 5, ax.get_ylim()[1]]
            ##ax.set_xlim(1, 100)
            ##ax.set_ylim(0, 100)
            ##x = np.array(ax.get_xlim()).sum() / 2
            ##y = np.array(ax.get_ylim()).sum() / 2
            ##xy = [x, y]
            ##print('xy = %r' % (xy,))
            ##x = np.nanmin(unixtime_list)
            ##xy = [x, y]
            ##print('xy = %r' % (xy,))
            ##ax.get_ylim()[0]]
            #xy = [ax.get_xlim()[0], ax.get_ylim()[1]]
            #ab = mpl.offsetbox.AnnotationBbox(
            #    imagebox, xy, xycoords='data',
            #    xybox=(-0., 0.),
            #    boxcoords="offset points",
            #    box_alignment=(0, 1), pad=0.0)
            #ax.add_artist(ab)

    if ut.get_argflag('--contextadjust'):
        #pt.adjust_subplots2(left=.08, bottom=.1, top=.9, wspace=.3, hspace=.1)
        pt.adjust_subplots2(use_argv=True)
コード例 #3
0
ファイル: experiments.py プロジェクト: simplesoftMX/ibeis_cnn
def sift_dataset_separability(dataset):
    """
    VERY HACKED RIGHT NOW. ONLY LIBERTY. BLINDLY CACHES

    Args:
        dataset (?):

    CommandLine:
        python -m ibeis_cnn.experiments --exec-sift_dataset_separability --show

    Example:
        >>> # SCRIPT
        >>> from ibeis_cnn.experiments import *  # NOQA
        >>> from ibeis_cnn import ingest_data
        >>> dataset = ingest_data.grab_liberty_siam_dataset(250000)
        >>> ut.quit_if_noshow()
        >>> sift_dataset_separability(dataset)
        >>> ut.show_if_requested()
    """
    import vtool as vt
    @ut.cached_func('tempsiftscorecache', cache_dir='.')
    def cached_siftscores():
        data, labels = dataset.subset('test')
        sift_scores, sift_list = test_sift_patchmatch_scores(data, labels)
        sift_scores = sift_scores.astype(np.float64)
        return sift_scores, labels, sift_list
    sift_scores, labels, sift_list = cached_siftscores()

    # I dont think we can compare lnbnn on liberty
    # because we dont have a set of id labels, we have
    # pairs of correspondences.
    #import pyflann
    #flann = pyflann.FLANN()
    #flann.build_index(sift_list)
    #idxs, dists = flann.nn_index(sift_list, 10)

    encoder_kw = {
        #'monotonize': False,
        'monotonize': True,
    }
    sift_encoder = vt.ScoreNormalizer(**encoder_kw)
    sift_encoder.fit(sift_scores, labels)
    dataname = dataset.alias_key
    viz_kw = dict(
        with_scores=False,
        with_postbayes=False,
        with_prebayes=False,
        target_tpr=.95,
        score_range=(0, 1)
    )
    inter_sift = sift_encoder.visualize(
        figtitle=dataname + ' SIFT scores. #data=' + str(len(labels)),
        fnum=None, **viz_kw)

    import plottool as pt

    #icon = ibs.get_database_icon()
    icon = ('http://www.councilchronicle.com/wp-content/uploads/2015/08/'
            'West-Virginia-Arrested-over-Bogus-Statue-of-Liberty-Bomb-Threat.jpg')
    if icon is not None:
        pt.overlay_icon(icon, coords=(1, 0), bbox_alignment=(1, 0), max_dsize=(None, 192))

    if ut.get_argflag('--contextadjust'):
        pt.adjust_subplots(left=.1, bottom=.25, wspace=.2, hspace=.2)
        pt.adjust_subplots(use_argv=True)
    return inter_sift
コード例 #4
0
def draw_feat_scoresep(testres, f=None, disttype=None):
    r"""
    SeeAlso:
        ibeis.algo.hots.scorenorm.train_featscore_normalizer

    CommandLine:
        python -m ibeis --tf TestResult.draw_feat_scoresep --show
        python -m ibeis --tf TestResult.draw_feat_scoresep --show -t default:sv_on=[True,False]
        python -m ibeis --tf TestResult.draw_feat_scoresep --show --db PZ_Master1
        python -m ibeis --tf TestResult.draw_feat_scoresep --show --db PZ_Master1 --disttype=L2_sift,fg
        python -m ibeis --tf TestResult.draw_feat_scoresep --show --db PZ_Master1 --disttype=L2_sift
        python -m ibeis --tf TestResult.draw_feat_scoresep --show --db PZ_MTEST -t best:lnbnn_on=True --namemode=True
        python -m ibeis --tf TestResult.draw_feat_scoresep --show --db PZ_MTEST -t best:lnbnn_on=True --namemode=False

        python -m ibeis --tf TestResult.draw_feat_scoresep --show --db PZ_MTEST --disttype=L2_sift
        python -m ibeis --tf TestResult.draw_feat_scoresep --show --db PZ_MTEST --disttype=L2_sift -t best:SV=False

        utprof.py -m ibeis --tf TestResult.draw_feat_scoresep --show --db PZ_Master1
        utprof.py -m ibeis --tf TestResult.draw_feat_scoresep --show --db PZ_Master1 --fsvx=1:2
        utprof.py -m ibeis --tf TestResult.draw_feat_scoresep --show --db PZ_Master1 --fsvx=0:1

        utprof.py -m ibeis --tf TestResult.draw_feat_scoresep --show --db PZ_Master1 -t best:lnbnn_on=False,bar_l2_on=True  --fsvx=0:1

        # We want to query the oxford annots taged query
        # and we want the database to contain
        # K correct images per query, as well as the distractors

        python -m ibeis --tf TestResult.draw_feat_scoresep  --show --db Oxford -a default:qhas_any=\(query,\),dpername=1,exclude_reference=True,minqual=ok
        python -m ibeis --tf TestResult.draw_feat_scoresep  --show --db Oxford -a default:qhas_any=\(query,\),dpername=1,exclude_reference=True,minqual=good

        python -m ibeis --tf get_annotcfg_list  --db PZ_Master1 -a timectrl --acfginfo --verbtd  --veryverbtd --nocache-aid

        python -m ibeis --tf TestResult.draw_feat_scoresep --show --db PZ_MTEST --disttype=ratio

    Example:
        >>> # SCRIPT
        >>> from ibeis.expt.test_result import *  # NOQA
        >>> from ibeis.init import main_helpers
        >>> disttype = ut.get_argval('--disttype', type_=list, default=None)
        >>> ibs, testres = main_helpers.testdata_expts(
        >>>     defaultdb='PZ_MTEST', a=['timectrl'], t=['best'])
        >>> f = ut.get_argval(('--filt', '-f'), type_=list, default=[''])
        >>> testres.draw_feat_scoresep(f=f)
        >>> ut.show_if_requested()
    """
    print('[testres] draw_feat_scoresep')
    import plottool as pt

    def load_feat_scores(qreq_, qaids):
        import ibeis  # NOQA
        from os.path import dirname, join  # NOQA
        # HACKY CACHE
        cfgstr = qreq_.get_cfgstr(with_input=True)
        cache_dir = join(dirname(dirname(ibeis.__file__)),
                         'TMP_FEATSCORE_CACHE')
        namemode = ut.get_argval('--namemode', default=True)
        fsvx = ut.get_argval('--fsvx',
                             type_='fuzzy_subset',
                             default=slice(None, None, None))
        threshx = ut.get_argval('--threshx', type_=int, default=None)
        thresh = ut.get_argval('--thresh', type_=float, default=.9)
        num = ut.get_argval('--num', type_=int, default=1)
        cfg_components = [
            cfgstr, disttype, namemode, fsvx, threshx, thresh, f, num
        ]
        cache_cfgstr = ','.join(ut.lmap(six.text_type, cfg_components))
        cache_hashid = ut.hashstr27(cache_cfgstr + '_v1')
        cache_name = ('get_cfgx_feat_scores_' + cache_hashid)

        @ut.cached_func(cache_name,
                        cache_dir=cache_dir,
                        key_argx=[],
                        use_cache=True)
        def get_cfgx_feat_scores(qreq_, qaids):
            from ibeis.algo.hots import scorenorm
            cm_list = qreq_.execute(qaids)
            # print('Done loading cached chipmatches')
            tup = scorenorm.get_training_featscores(qreq_,
                                                    cm_list,
                                                    disttype,
                                                    namemode,
                                                    fsvx,
                                                    threshx,
                                                    thresh,
                                                    num=num)
            # print(ut.depth_profile(tup))
            tp_scores, tn_scores, scorecfg = tup
            return tp_scores, tn_scores, scorecfg

        tp_scores, tn_scores, scorecfg = get_cfgx_feat_scores(qreq_, qaids)
        return tp_scores, tn_scores, scorecfg

    valid_case_pos = testres.case_sample2(filt_cfg=f, return_mask=False)
    cfgx2_valid_qxs = ut.group_items(valid_case_pos.T[0], valid_case_pos.T[1])
    test_qaids = testres.get_test_qaids()
    cfgx2_valid_qaids = ut.map_dict_vals(ut.partial(ut.take, test_qaids),
                                         cfgx2_valid_qxs)

    join_acfgs = True

    # TODO: option to average over pipeline configurations
    if join_acfgs:
        groupxs = testres.get_cfgx_groupxs()
    else:
        groupxs = list(zip(range(len(testres.cfgx2_qreq_))))
    grouped_qreqs = ut.apply_grouping(testres.cfgx2_qreq_, groupxs)

    grouped_scores = []
    for cfgxs, qreq_group in zip(groupxs, grouped_qreqs):
        # testres.print_pcfg_info()
        score_group = []
        for cfgx, qreq_ in zip(cfgxs, testres.cfgx2_qreq_):
            print('Loading cached chipmatches')
            qaids = cfgx2_valid_qaids[cfgx]
            tp_scores, tn_scores, scorecfg = load_feat_scores(qreq_, qaids)
            score_group.append((tp_scores, tn_scores, scorecfg))
        grouped_scores.append(score_group)

    cfgx2_shortlbl = testres.get_short_cfglbls(join_acfgs=join_acfgs)
    for score_group, lbl in zip(grouped_scores, cfgx2_shortlbl):
        tp_scores = np.hstack(ut.take_column(score_group, 0))
        tn_scores = np.hstack(ut.take_column(score_group, 1))
        scorecfg = '+++'.join(ut.unique(ut.take_column(score_group, 2)))
        score_group
        # TODO: learn this score normalizer as a model
        # encoder = vt.ScoreNormalizer(adjust=4, monotonize=False)
        encoder = vt.ScoreNormalizer(adjust=2, monotonize=True)
        encoder.fit_partitioned(tp_scores, tn_scores, verbose=False)
        figtitle = 'Feature Scores: %s, %s' % (scorecfg, lbl)
        fnum = None

        vizkw = {}
        sephack = ut.get_argflag('--sephack')
        if not sephack:
            vizkw['target_tpr'] = .95
            vizkw['score_range'] = (0, 1.0)

        encoder.visualize(
            figtitle=figtitle,
            fnum=fnum,
            with_scores=False,
            #with_prebayes=True,
            with_prebayes=False,
            with_roc=True,
            with_postbayes=False,
            #with_postbayes=True,
            **vizkw)
        icon = testres.ibs.get_database_icon()
        if icon is not None:
            pt.overlay_icon(icon, coords=(1, 0), bbox_alignment=(1, 0))

        if ut.get_argflag('--contextadjust'):
            pt.adjust_subplots(left=.1, bottom=.25, wspace=.2, hspace=.2)
            pt.adjust_subplots(use_argv=True)
    return encoder