def dump_match_img(qres, ibs, aid, qreq_=None, fnum=None, *args, **kwargs): import plottool as pt import matplotlib as mpl # Pop save kwargs from kwargs save_keys = ['dpi', 'figsize', 'saveax', 'fpath', 'fpath_strict', 'verbose'] save_vals = ut.dict_take_pop(kwargs, save_keys, None) savekw = dict(zip(save_keys, save_vals)) fpath = savekw.pop('fpath') if fpath is None and 'fpath_strict' not in savekw: savekw['usetitle'] = True was_interactive = mpl.is_interactive() if was_interactive: mpl.interactive(False) # Make new figure if fnum is None: fnum = pt.next_fnum() #fig = pt.figure(fnum=fnum, doclf=True, docla=True) fig = pt.plt.figure(fnum) fig.clf() # Draw Matches ax, xywh1, xywh2 = qres.show_matches(ibs, aid, colorbar_=False, qreq_=qreq_, fnum=fnum, **kwargs) if not kwargs.get('notitle', False): pt.set_figtitle(qres.make_smaller_title()) # Save Figure # Setting fig=fig might make the dpi and figsize code not work img_fpath = pt.save_figure(fpath=fpath, fig=fig, **savekw) if was_interactive: mpl.interactive(was_interactive) pt.plt.close(fig) # Ensure that this figure will not pop up #if False: # ut.startfile(img_fpath) return img_fpath
def show_power_law_plots(): """ CommandLine: python -m ibeis.algo.hots.devcases --test-show_power_law_plots --show Example: >>> # DISABLE_DOCTEST >>> #%pylab qt4 >>> from ibeis.all_imports import * # NOQA >>> from ibeis.algo.hots.devcases import * # NOQA >>> show_power_law_plots() >>> pt.show_if_requested() """ import numpy as np import plottool as pt xdata = np.linspace(0, 1, 1000) ydata = xdata fnum = 1 powers = [.01, .1, .5, 1, 2, 30, 70, 100, 1000] nRows, nCols = pt.get_square_row_cols(len(powers), fix=True) pnum_next = pt.make_pnum_nextgen(nRows, nCols) for p in powers: plotkw = dict( fnum=fnum, marker='g-', linewidth=2, pnum=pnum_next(), title='p=%r' % (p,) ) ydata_ = ydata ** p pt.plot2(xdata, ydata_, **plotkw) pt.set_figtitle('power laws y = x ** p')
def plot(self, fnum=None, pnum=(1, 1, 1), **kwargs): import plottool as pt fnum = pt.ensure_fnum(fnum) pt.figure(fnum=fnum, docla=True, doclf=True) show_keypoints(self.chip, self.kpts, fnum=fnum, pnum=pnum, **kwargs) if self.figtitle is not None: pt.set_figtitle(self.figtitle)
def show_power_law_plots(): """ CommandLine: python -m ibeis.algo.hots.devcases --test-show_power_law_plots --show Example: >>> # DISABLE_DOCTEST >>> #%pylab qt4 >>> from ibeis.all_imports import * # NOQA >>> from ibeis.algo.hots.devcases import * # NOQA >>> show_power_law_plots() >>> pt.show_if_requested() """ import numpy as np import plottool as pt xdata = np.linspace(0, 1, 1000) ydata = xdata fnum = 1 powers = [.01, .1, .5, 1, 2, 30, 70, 100, 1000] nRows, nCols = pt.get_square_row_cols(len(powers), fix=True) pnum_next = pt.make_pnum_nextgen(nRows, nCols) for p in powers: plotkw = dict(fnum=fnum, marker='g-', linewidth=2, pnum=pnum_next(), title='p=%r' % (p, )) ydata_ = ydata**p pt.plot2(xdata, ydata_, **plotkw) pt.set_figtitle('power laws y = x ** p')
def show_single_coverage_mask(qreq_, cm, weight_mask_m, weight_mask, daids, fnum=None): import plottool as pt from ibeis import viz fnum = pt.ensure_fnum(fnum) idx_list = ut.dict_take(cm.daid2_idx, daids) nPlots = len(idx_list) + 1 nRows, nCols = pt.get_square_row_cols(nPlots) pnum_ = pt.make_pnum_nextgen(nRows, nCols) pt.figure(fnum=fnum, pnum=(1, 2, 1)) # Draw coverage masks with bbox # <FlipHack> #weight_mask_m = np.fliplr(np.flipud(weight_mask_m)) #weight_mask = np.fliplr(np.flipud(weight_mask)) # </FlipHack> stacked_weights, offset_tup, sf_tup = vt.stack_images(weight_mask_m, weight_mask, return_sf=True) (woff, hoff) = offset_tup[1] wh1 = weight_mask_m.shape[0:2][::-1] wh2 = weight_mask.shape[0:2][::-1] pt.imshow(255 * (stacked_weights), fnum=fnum, pnum=pnum_(0), title='(query image) What did match vs what should match') pt.draw_bbox(( 0, 0) + wh1, bbox_color=(0, 0, 1)) pt.draw_bbox((woff, hoff) + wh2, bbox_color=(0, 0, 1)) # Get contributing matches qaid = cm.qaid daid_list = daids fm_list = ut.take(cm.fm_list, idx_list) fs_list = ut.take(cm.fs_list, idx_list) # Draw matches for px, (daid, fm, fs) in enumerate(zip(daid_list, fm_list, fs_list), start=1): viz.viz_matches.show_matches2(qreq_.ibs, qaid, daid, fm, fs, draw_pts=False, draw_lines=True, draw_ell=False, fnum=fnum, pnum=pnum_(px), darken=.5) coverage_score = score_matching_mask(weight_mask_m, weight_mask) pt.set_figtitle('score=%.4f' % (coverage_score,))
def draw_junction_tree(model, fnum=None, **kwargs): import plottool as pt fnum = pt.ensure_fnum(fnum) pt.figure(fnum=fnum) ax = pt.gca() from pgmpy.models import JunctionTree if not isinstance(model, JunctionTree): netx_graph = model.to_junction_tree() else: netx_graph = model # prettify nodes def fixtupkeys(dict_): return { ', '.join(k) if isinstance(k, tuple) else k: fixtupkeys(v) for k, v in dict_.items() } n = fixtupkeys(netx_graph.node) e = fixtupkeys(netx_graph.edge) a = fixtupkeys(netx_graph.adj) netx_graph.node = n netx_graph.edge = e netx_graph.adj = a #netx_graph = model.to_markov_model() #pos = netx.pygraphviz_layout(netx_graph) #pos = netx.graphviz_layout(netx_graph) pos = netx.pydot_layout(netx_graph) node_color = [pt.NEUTRAL] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, node_size=2000) netx.draw(netx_graph, **drawkw) if kwargs.get('show_title', True): pt.set_figtitle('Junction / Clique Tree / Cluster Graph')
def show_hist_submaxima(hist_, edges=None, centers=None, maxima_thresh=.8, pnum=(1, 1, 1)): r""" For C++ to show data Args: hist_ (?): edges (None): centers (None): CommandLine: python -m vtool.histogram --test-show_hist_submaxima --show python -m pyhesaff._pyhesaff --test-test_rot_invar --show python -m vtool.histogram --test-show_hist_submaxima --dpath figures --save ~/latex/crall-candidacy-2015/figures/show_hist_submaxima.jpg Example: >>> # DISABLE_DOCTEST >>> import plottool as pt >>> from vtool.histogram import * # NOQA >>> # build test data >>> hist_ = np.array(list(map(float, ut.get_argval('--hist', type_=list, default=[1, 4, 2, 5, 3, 3])))) >>> edges = np.array(list(map(float, ut.get_argval('--edges', type_=list, default=[0, 1, 2, 3, 4, 5, 6])))) >>> maxima_thresh = ut.get_argval('--maxima_thresh', type_=float, default=.8) >>> centers = None >>> # execute function >>> show_hist_submaxima(hist_, edges, centers, maxima_thresh) >>> pt.show_if_requested() """ #print(repr(hist_)) #print(repr(hist_.shape)) #print(repr(edges)) #print(repr(edges.shape)) #ut.embed() import plottool as pt #ut.embed() if centers is None: centers = hist_edges_to_centers(edges) bin_colors = pt.get_orientation_color(centers) pt.figure(fnum=pt.next_fnum(), pnum=pnum) POLAR = False if POLAR: pt.df2.plt.subplot(*pnum, polar=True, axisbg='#000000') pt.draw_hist_subbin_maxima(hist_, centers, bin_colors=bin_colors, maxima_thresh=maxima_thresh) #pt.gca().set_rmax(hist_.max() * 1.1) #pt.gca().invert_yaxis() #pt.gca().invert_xaxis() pt.dark_background() #if ut.get_argflag('--legend'): # pt.figure(fnum=pt.next_fnum()) # centers_ = np.append(centers, centers[0]) # r = np.ones(centers_.shape) * .2 # ax = pt.df2.plt.subplot(111, polar=True) # pt.plots.colorline(centers_, r, cmap=pt.df2.plt.get_cmap('hsv'), linewidth=10) # #ax.plot(centers_, r, 'm', color=bin_colors, linewidth=100) # ax.set_rmax(.2) # #ax.grid(True) # #ax.set_title("Angle Colors", va='bottom') title = ut.get_argval('--title', default='') import plottool as pt pt.set_figtitle(title)
def draw_tree_model(model, **kwargs): import plottool as pt import networkx as netx if not ut.get_argval('--hackjunc'): fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, doclf=True) # NOQA ax = pt.gca() #name_nodes = sorted(ut.list_getattr(model.ttype2_cpds[NAME_TTYPE], 'variable')) netx_graph = model.to_markov_model() #pos = netx.pygraphviz_layout(netx_graph) #pos = netx.graphviz_layout(netx_graph) #pos = get_hacked_pos(netx_graph, name_nodes, prog='neato') pos = netx.nx_pydot.pydot_layout(netx_graph) node_color = [pt.WHITE] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, node_size=1100) netx.draw(netx_graph, **drawkw) if kwargs.get('show_title', True): pt.set_figtitle('Markov Model') if not ut.get_argval('--hackmarkov'): fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, doclf=True) # NOQA ax = pt.gca() netx_graph = model.to_junction_tree() # prettify nodes def fixtupkeys(dict_): return { ', '.join(k) if isinstance(k, tuple) else k: fixtupkeys(v) for k, v in dict_.items() } # FIXME n = fixtupkeys(netx_graph.node) e = fixtupkeys(netx_graph.edge) a = fixtupkeys(netx_graph.adj) netx_graph.nodes.update(n) netx_graph.edges.update(e) netx_graph.adj.update(a) #netx_graph = model.to_markov_model() #pos = netx.pygraphviz_layout(netx_graph) #pos = netx.graphviz_layout(netx_graph) pos = netx.nx_pydot.pydot_layout(netx_graph) node_color = [pt.WHITE] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, node_size=2000) netx.draw(netx_graph, **drawkw) if kwargs.get('show_title', True): pt.set_figtitle('Junction/Clique Tree / Cluster Graph')
def _chip_view(mode=0, pnum=(1, 1, 1), **kwargs): print('... _chip_view mode=%r' % mode_ptr[0]) kwargs['ell'] = mode_ptr[0] == 1 kwargs['pts'] = mode_ptr[0] == 2 if not ischild: pt.figure(fnum=fnum, pnum=pnum, docla=True, doclf=True) # Toggle no keypoints view viz.show_chip(ibs, aid, fnum=fnum, pnum=pnum, config2_=config2_, **kwargs) pt.set_figtitle('Chip View')
def show_single_coverage_mask(qreq_, cm, weight_mask_m, weight_mask, daids, fnum=None): import plottool as pt from ibeis import viz fnum = pt.ensure_fnum(fnum) idx_list = ut.dict_take(cm.daid2_idx, daids) nPlots = len(idx_list) + 1 nRows, nCols = pt.get_square_row_cols(nPlots) pnum_ = pt.make_pnum_nextgen(nRows, nCols) pt.figure(fnum=fnum, pnum=(1, 2, 1)) # Draw coverage masks with bbox # <FlipHack> #weight_mask_m = np.fliplr(np.flipud(weight_mask_m)) #weight_mask = np.fliplr(np.flipud(weight_mask)) # </FlipHack> stacked_weights, offset_tup, sf_tup = vt.stack_images(weight_mask_m, weight_mask, return_sf=True) (woff, hoff) = offset_tup[1] wh1 = weight_mask_m.shape[0:2][::-1] wh2 = weight_mask.shape[0:2][::-1] pt.imshow(255 * (stacked_weights), fnum=fnum, pnum=pnum_(0), title='(query image) What did match vs what should match') pt.draw_bbox((0, 0) + wh1, bbox_color=(0, 0, 1)) pt.draw_bbox((woff, hoff) + wh2, bbox_color=(0, 0, 1)) # Get contributing matches qaid = cm.qaid daid_list = daids fm_list = ut.take(cm.fm_list, idx_list) fs_list = ut.take(cm.fs_list, idx_list) # Draw matches for px, (daid, fm, fs) in enumerate(zip(daid_list, fm_list, fs_list), start=1): viz.viz_matches.show_matches2(qreq_.ibs, qaid, daid, fm, fs, draw_pts=False, draw_lines=True, draw_ell=False, fnum=fnum, pnum=pnum_(px), darken=.5) coverage_score = score_matching_mask(weight_mask_m, weight_mask) pt.set_figtitle('score=%.4f' % (coverage_score, ))
def chipmatch_view(self, fnum=None, pnum=(1, 1, 1), verbose=None, **kwargs_): """ just visualizes the matches using some type of lines CommandLine: python -m ibeis.viz.interact.interact_matches --test-chipmatch_view --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.interact.interact_matches import * # NOQA >>> self = testdata_match_interact() >>> self.chipmatch_view() >>> pt.show_if_requested() """ if fnum is None: fnum = self.fnum if verbose is None: verbose = ut.VERBOSE ibs = self.ibs aid = self.daid qaid = self.qaid figtitle = self.figtitle # drawing mode draw: with/without lines/feats mode = kwargs_.get('mode', self.mode) draw_ell = mode >= 1 draw_lines = mode == 2 #self.mode = (self.mode + 1) % 3 pt.figure(fnum=fnum, docla=True, doclf=True) show_matches_kw = self.kwargs.copy() show_matches_kw.update( dict(fnum=fnum, pnum=pnum, draw_lines=draw_lines, draw_ell=draw_ell, colorbar_=True, vert=self.vert)) show_matches_kw.update(kwargs_) if self.warp_homog: show_matches_kw['H1'] = self.H1 #show_matches_kw['score'] = self.score show_matches_kw['rawscore'] = self.score show_matches_kw['aid2_raw_rank'] = self.rank tup = viz.viz_matches.show_matches2(ibs, self.qaid, self.daid, self.fm, self.fs, qreq_=self.qreq_, **show_matches_kw) ax, xywh1, xywh2 = tup self.xywh2 = xywh2 pt.set_figtitle(figtitle + ' ' + vh.get_vsstr(qaid, aid))
def draw_tree_model(model, **kwargs): import plottool as pt import networkx as netx if not ut.get_argval('--hackjunc'): fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, doclf=True) # NOQA ax = pt.gca() #name_nodes = sorted(ut.list_getattr(model.ttype2_cpds['name'], 'variable')) netx_graph = model.to_markov_model() #pos = netx.pygraphviz_layout(netx_graph) #pos = netx.graphviz_layout(netx_graph) #pos = get_hacked_pos(netx_graph, name_nodes, prog='neato') pos = netx.pydot_layout(netx_graph) node_color = [pt.WHITE] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, node_size=1100) netx.draw(netx_graph, **drawkw) if kwargs.get('show_title', True): pt.set_figtitle('Markov Model') if not ut.get_argval('--hackmarkov'): fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, doclf=True) # NOQA ax = pt.gca() netx_graph = model.to_junction_tree() # prettify nodes def fixtupkeys(dict_): return { ', '.join(k) if isinstance(k, tuple) else k: fixtupkeys(v) for k, v in dict_.items() } n = fixtupkeys(netx_graph.node) e = fixtupkeys(netx_graph.edge) a = fixtupkeys(netx_graph.adj) netx_graph.node = n netx_graph.edge = e netx_graph.adj = a #netx_graph = model.to_markov_model() #pos = netx.pygraphviz_layout(netx_graph) #pos = netx.graphviz_layout(netx_graph) pos = netx.pydot_layout(netx_graph) node_color = [pt.WHITE] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, node_size=2000) netx.draw(netx_graph, **drawkw) if kwargs.get('show_title', True): pt.set_figtitle('Junction/Clique Tree / Cluster Graph')
def show_hud(self): """ Creates heads up display """ # Button positioners hl_slot, hr_slot = pt.make_bbox_positioners(y=.02, w=.16, h=3 * ut.PHI_B ** 4, xpad=.05, startx=0, stopx=1) select_none_text = 'None of these' if self.suggest_aids is not None and len(self.suggest_aids) == 0: select_none_text += '\n(SUGGESTED BY IBEIS)' none_tup = self.append_button(select_none_text, callback=partial(self.select_none), rect=hl_slot(0)) #Draw boarder around the None of these button none_button_axis = none_tup[1] if self.other_checkbox_states['none']: pt.draw_border(none_button_axis, color=(0, 1, 0), lw=4, adjust=False) else: pt.draw_border(none_button_axis, color=(.7, .7, .7), lw=4, adjust=False) select_junk_text = 'Junk Query Image' junk_tup = self.append_button(select_junk_text, callback=partial(self.select_junk), rect=hl_slot(1)) #Draw boarder around the None of these button junk_button_axis = junk_tup[1] if self.other_checkbox_states['junk']: pt.draw_border(junk_button_axis, color=(0, 1, 0), lw=4, adjust=False) else: pt.draw_border(junk_button_axis, color=(.7, .7, .7), lw=4, adjust=False) #Add other HUD buttons self.append_button('Quit', callback=partial(self.quit), rect=hr_slot(0)) self.append_button('Confirm Selection', callback=partial(self.confirm), rect=hr_slot(1)) if self.progress_current is not None and self.progress_total is not None: self.progress_string = str(self.progress_current) + '/' + str(self.progress_total) else: self.progress_string = '' figtitle_fmt = ''' Animal Identification {progress_string} ''' figtitle = figtitle_fmt.format(**self.__dict__) # sexy: using obj dict as fmtkw pt.set_figtitle(figtitle)
def draw_junction_tree(model, fnum=None, **kwargs): import plottool as pt fnum = pt.ensure_fnum(fnum) pt.figure(fnum=fnum) ax = pt.gca() from pgmpy.models import JunctionTree if not isinstance(model, JunctionTree): netx_graph = model.to_junction_tree() else: netx_graph = model # prettify nodes def fixtupkeys(dict_): return { ', '.join(k) if isinstance(k, tuple) else k: fixtupkeys(v) for k, v in dict_.items() } n = fixtupkeys(netx_graph.node) e = fixtupkeys(netx_graph.edge) a = fixtupkeys(netx_graph.adj) netx_graph.node = n netx_graph.edge = e netx_graph.adj = a #netx_graph = model.to_markov_model() #pos = nx.nx_agraph.pygraphviz_layout(netx_graph) #pos = nx.nx_agraph.graphviz_layout(netx_graph) pos = nx.pydot_layout(netx_graph) node_color = [pt.NEUTRAL] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, node_size=2000) nx.draw(netx_graph, **drawkw) if kwargs.get('show_title', True): pt.set_figtitle('Junction / Clique Tree / Cluster Graph')
def show_model(model, evidence={}, soft_evidence={}, **kwargs): """ References: http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer Ignore: pkg-config --libs-only-L libcgraph sudo apt-get install libgraphviz-dev -y sudo apt-get install libgraphviz4 -y # sudo apt-get install pkg-config sudo apt-get install libgraphviz-dev # pip install git+git://github.com/pygraphviz/pygraphviz.git pip install pygraphviz python -c "import pygraphviz; print(pygraphviz.__file__)" sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/" python3 -c "import pygraphviz; print(pygraphviz.__file__)" CommandLine: python -m ibeis.algo.hots.bayes --exec-show_model --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.algo.hots.bayes import * # NOQA >>> model = '?' >>> evidence = {} >>> soft_evidence = {} >>> result = show_model(model, evidence, soft_evidence) >>> print(result) >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'): draw_tree_model(model, **kwargs) return import plottool as pt import networkx as netx fnum = pt.ensure_fnum(None) netx_graph = (model) #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"' #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR' pos_dict = get_hacked_pos(netx_graph) #pos_dict = netx.nx_agraph.pygraphviz_layout(netx_graph) #pos = netx.nx_agraph.nx_pydot.pydot_layout(netx_graph, prog='dot') #pos_dict = netx.nx_agraph.graphviz_layout(netx_graph) textprops = { 'family': 'monospace', 'horizontalalignment': 'left', #'horizontalalignment': 'center', #'size': 12, 'size': 8, } netx_nodes = model.nodes(data=True) node_key_list = ut.get_list_column(netx_nodes, 0) pos_list = ut.dict_take(pos_dict, node_key_list) var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])} prior_text = None post_text = None evidence_tas = [] post_tas = [] prior_tas = [] node_color = [] has_inferred = evidence or var2_post if has_inferred: ignore_prior_with_ttype = [SCORE_TTYPE, MATCH_TTYPE] show_prior = False else: ignore_prior_with_ttype = [] #show_prior = True show_prior = False dpy = 5 dbx, dby = (20, 20) takw1 = { 'bbox_align': (.5, 0), 'pos_offset': [0, dpy], 'bbox_offset': [dbx, dby] } takw2 = { 'bbox_align': (.5, 1), 'pos_offset': [0, -dpy], 'bbox_offset': [-dbx, -dby] } name_colors = pt.distinct_colors(max(model.num_names, 10)) name_colors = name_colors[:model.num_names] #cmap_ = 'hot' #mx = 0.65 #mn = 0.15 cmap_, mn, mx = 'plasma', 0.15, 1.0 _cmap = pt.plt.get_cmap(cmap_) def cmap(x): return _cmap((x * mx) + mn) for node, pos in zip(netx_nodes, pos_list): variable = node[0] cpd = model.var2_cpd[variable] prior_marg = (cpd if cpd.evidence is None else cpd.marginalize( cpd.evidence, inplace=False)) show_evidence = variable in evidence show_prior = cpd.ttype not in ignore_prior_with_ttype show_post = variable in var2_post show_prior |= cpd.ttype not in ignore_prior_with_ttype post_marg = None if show_post: post_marg = var2_post[variable] def get_name_color(phi): order = phi.values.argsort()[::-1] if len(order) < 2: dist_next = phi.values[order[0]] else: dist_next = phi.values[order[0]] - phi.values[order[1]] dist_total = (phi.values[order[0]]) confidence = (dist_total * dist_next)**(2.5 / 4) #print('confidence = %r' % (confidence,)) color = name_colors[order[0]] color = pt.color_funcs.desaturate_rgb(color, 1 - confidence) color = np.array(color) return color if variable in evidence: if cpd.ttype == SCORE_TTYPE: cmap_index = evidence[variable] / (cpd.variable_card - 1) color = cmap(cmap_index) color = pt.lighten_rgb(color, .4) color = np.array(color) node_color.append(color) elif cpd.ttype == NAME_TTYPE: color = name_colors[evidence[variable]] color = np.array(color) node_color.append(color) else: color = pt.FALSE_RED node_color.append(color) #elif variable in soft_evidence: # color = pt.LIGHT_PINK # show_prior = True # color = get_name_color(prior_marg) # node_color.append(color) else: if cpd.ttype == NAME_TTYPE and post_marg is not None: color = get_name_color(post_marg) node_color.append(color) elif cpd.ttype == MATCH_TTYPE and post_marg is not None: color = cmap(post_marg.values[1]) color = pt.lighten_rgb(color, .4) color = np.array(color) node_color.append(color) else: #color = pt.WHITE color = pt.NEUTRAL node_color.append(color) if show_prior: if variable in soft_evidence: prior_color = pt.LIGHT_PINK else: prior_color = None prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') prior_tas.append( dict(text=prior_text, pos=pos, color=prior_color, **takw2)) if show_evidence: _takw1 = takw1 if cpd.ttype == SCORE_TTYPE: _takw1 = takw2 evidence_text = cpd.variable_statenames[evidence[variable]] if isinstance(evidence_text, int): evidence_text = '%d/%d' % (evidence_text + 1, cpd.variable_card) evidence_tas.append( dict(text=evidence_text, pos=pos, color=color, **_takw1)) if show_post: _takw1 = takw1 if cpd.ttype == MATCH_TTYPE: _takw1 = takw2 post_text = pgm_ext.make_factor_text(post_marg, 'post') post_tas.append(dict(text=post_text, pos=pos, color=None, **_takw1)) def trnps_(dict_list): """ tranpose dict list """ list_dict = ut.ddict(list) for dict_ in dict_list: for key, val in dict_.items(): list_dict[key + '_list'].append(val) return list_dict takw1_ = trnps_(post_tas + evidence_tas) takw2_ = trnps_(prior_tas) # Draw graph if has_inferred: pnum1 = (3, 1, (slice(0, 2), 0)) else: pnum1 = None fig = pt.figure(fnum=fnum, pnum=pnum1, doclf=True) # NOQA ax = pt.gca() #print('node_color = %s' % (ut.repr3(node_color),)) drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1500, node_color=node_color) netx.draw(netx_graph, **drawkw) hacks = [] if len(post_tas + evidence_tas): hacks.append(pt.draw_text_annotations(textprops=textprops, **takw1_)) if prior_tas: hacks.append(pt.draw_text_annotations(textprops=textprops, **takw2_)) xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) num_annots = len(model.ttype2_cpds[NAME_TTYPE]) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) fig = pt.gcf() title = 'num_names=%r, num_annots=%r' % ( model.num_names, num_annots, ) map_assign = kwargs.get('map_assign', None) top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: def word_insert(text): return '' if len(text) == 0 else text + ' ' title += '\n%sMAP: ' % (word_insert(kwargs.get('method', ''))) title += map_assign + ' @' + '%.2f%%' % (100 * map_prob, ) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) for hack in hacks: hack() # Hack in colorbars if has_inferred: pt.colorbar(np.linspace(0, 1, len(name_colors)), name_colors, lbl=NAME_TTYPE, ticklabels=model.ttype2_template[NAME_TTYPE].basis, ticklocation='left') basis = model.ttype2_template[SCORE_TTYPE].basis scalars = np.linspace(0, 1, len(basis)) scalars = np.linspace(0, 1, 100) colors = pt.scores_to_color(scalars, cmap_=cmap_, reverse_cmap=False, cmap_range=(mn, mx)) colors = [pt.lighten_rgb(c, .4) for c in colors] if ut.list_type(basis) is int: pt.colorbar(scalars, colors, lbl=SCORE_TTYPE, ticklabels=np.array(basis) + 1) else: pt.colorbar(scalars, colors, lbl=SCORE_TTYPE, ticklabels=basis) #print('basis = %r' % (basis,)) # Draw probability hist if has_inferred and top_assignments is not None: bin_labels = ut.get_list_column(top_assignments, 0) bin_vals = ut.get_list_column(top_assignments, 1) # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels] pt.draw_histogram( bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))), transpose=True, use_darkbackground=False, #xtick_rotation=-10, ylabel='Prob', xlabel='assignment') pt.set_title('Assignment probabilities')
def draw_markov_model(model, fnum=None, **kwargs): import plottool as pt fnum = pt.ensure_fnum(fnum) pt.figure(fnum=fnum, doclf=True) ax = pt.gca() from pgmpy.models import MarkovModel if isinstance(model, MarkovModel): markovmodel = model else: markovmodel = model.to_markov_model() # pos = netx.pydot_layout(markovmodel) pos = netx.pygraphviz_layout(markovmodel) # Referenecs: # https://groups.google.com/forum/#!topic/networkx-discuss/FwYk0ixLDuY # pos = netx.spring_layout(markovmodel) # pos = netx.circular_layout(markovmodel) # curved-arrow # markovmodel.edge_attr['curved-arrow'] = True # markovmodel.graph.setdefault('edge', {})['splines'] = 'curved' # markovmodel.graph.setdefault('graph', {})['splines'] = 'curved' # markovmodel.graph.setdefault('edge', {})['splines'] = 'curved' node_color = [pt.NEUTRAL] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, # NOQA node_size=1100) from matplotlib.patches import FancyArrowPatch, Circle import numpy as np def draw_network(G, pos, ax, sg=None): for n in G: c = Circle(pos[n], radius=10, alpha=0.5, color=pt.NEUTRAL_BLUE) ax.add_patch(c) G.node[n]['patch'] = c x, y = pos[n] pt.ax_absolute_text(x, y, n, ha='center', va='center') seen = {} for (u, v, d) in G.edges(data=True): n1 = G.node[u]['patch'] n2 = G.node[v]['patch'] rad = 0.1 if (u, v) in seen: rad = seen.get((u, v)) rad = (rad + np.sign(rad) * 0.1) * -1 alpha = 0.5 color = 'k' e = FancyArrowPatch(n1.center, n2.center, patchA=n1, patchB=n2, # arrowstyle='-|>', arrowstyle='-', connectionstyle='arc3,rad=%s' % rad, mutation_scale=10.0, lw=2, alpha=alpha, color=color) seen[(u, v)] = rad ax.add_patch(e) return e # netx.draw(markovmodel, **drawkw) draw_network(markovmodel, pos, ax) ax.autoscale() pt.plt.axis('equal') pt.plt.axis('off') if kwargs.get('show_title', True): pt.set_figtitle('Markov Model')
def draw_bayesian_model(model, evidence={}, soft_evidence={}, fnum=None, pnum=None, **kwargs): from pgmpy.models import BayesianModel if not isinstance(model, BayesianModel): model = model.to_bayesian_model() import plottool as pt import networkx as netx factor_list = kwargs.get('factor_list', []) ttype_colors, ttype_scalars = make_colorcodes(model) textprops = { 'horizontalalignment': 'left', 'family': 'monospace', 'size': 8, } # build graph attrs tup = get_node_viz_attrs( model, evidence, soft_evidence, factor_list, ttype_colors, **kwargs) node_color, pos_list, pos_dict, takws = tup # draw graph has_infered = evidence or 'factor_list' in kwargs fig = pt.figure(fnum=fnum, pnum=pnum, doclf=True) # NOQA ax = pt.gca() drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1100, node_color=node_color) netx.draw(model, **drawkw) hacks = [pt.draw_text_annotations(textprops=textprops, **takw) for takw in takws if takw] xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) if 'name' in model.ttype2_template: num_names = len(model.ttype2_template['name'].basis) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) title = 'num_names=%r, num_annots=%r' % (num_names, num_annots,) else: title = '' map_assign = kwargs.get('map_assign', None) def word_insert(text): return '' if len(text) == 0 else text + ' ' top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: title += '\n%sMAP: ' % (word_insert(kwargs.get('method', ''))) title += map_assign + ' @' + '%.2f%%' % (100 * map_prob,) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) for hack in hacks: hack() if has_infered: # Hack in colorbars # if ut.list_type(basis) is int: # pt.colorbar(scalars, colors, lbl='score', ticklabels=np.array(basis) + 1) # else: # pt.colorbar(scalars, colors, lbl='score', ticklabels=basis) keys = ['name', 'score'] locs = ['left', 'right'] for key, loc in zip(keys, locs): if key in ttype_colors: basis = model.ttype2_template[key].basis # scalars = colors = ttype_colors[key] scalars = ttype_scalars[key] pt.colorbar(scalars, colors, lbl=key, ticklabels=basis, ticklocation=loc)
def show_model(model, evidence={}, soft_evidence={}, **kwargs): """ References: http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer Ignore: pkg-config --libs-only-L libcgraph sudo apt-get install libgraphviz-dev -y sudo apt-get install libgraphviz4 -y # sudo apt-get install pkg-config sudo apt-get install libgraphviz-dev # pip install git+git://github.com/pygraphviz/pygraphviz.git pip install pygraphviz python -c "import pygraphviz; print(pygraphviz.__file__)" sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/" python3 -c "import pygraphviz; print(pygraphviz.__file__)" """ if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'): draw_tree_model(model, **kwargs) return import plottool as pt import networkx as netx import matplotlib as mpl fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, pnum=(3, 1, (slice(0, 2), 0)), doclf=True) # NOQA #fig = pt.figure(fnum=fnum, pnum=(3, 2, (1, slice(1, 2))), doclf=True) # NOQA ax = pt.gca() var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])} netx_graph = (model) #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"' #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR' pos = get_hacked_pos(netx_graph) #netx.nx_agraph.pygraphviz_layout(netx_graph) #pos = netx.nx_agraph.pydot_layout(netx_graph, prog='dot') #pos = netx.nx_agraph.graphviz_layout(netx_graph) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_size=1500) if evidence is not None: node_colors = [ # (pt.TRUE_BLUE (pt.WHITE if node not in soft_evidence else pt.LIGHT_PINK) if node not in evidence else pt.FALSE_RED for node in netx_graph.nodes() ] for node in netx_graph.nodes(): cpd = model.var2_cpd[node] if cpd.ttype == 'score': pass drawkw['node_color'] = node_colors netx.draw(netx_graph, **drawkw) show_probs = True if show_probs: textprops = { 'family': 'monospace', 'horizontalalignment': 'left', #'horizontalalignment': 'center', #'size': 12, 'size': 8, } textkw = dict( xycoords='data', boxcoords='offset points', pad=0.25, framewidth=True, arrowprops=dict(arrowstyle='->'), #bboxprops=dict(fc=node_attr['fillcolor']), ) netx_nodes = model.nodes(data=True) node_key_list = ut.get_list_column(netx_nodes, 0) pos_list = ut.dict_take(pos, node_key_list) artist_list = [] offset_box_list = [] for pos_, node in zip(pos_list, netx_nodes): x, y = pos_ variable = node[0] cpd = model.var2_cpd[variable] prior_marg = (cpd if cpd.evidence is None else cpd.marginalize( cpd.evidence, inplace=False)) prior_text = None text = None if variable in evidence: text = cpd.variable_statenames[evidence[variable]] elif variable in var2_post: post_marg = var2_post[variable] text = pgm_ext.make_factor_text(post_marg, 'post') prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') else: if len(evidence) == 0 and len(soft_evidence) == 0: prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') show_post = kwargs.get('show_post', False) show_prior = kwargs.get('show_prior', False) show_prior = True show_post = True show_ev = (evidence is not None and variable in evidence) if (show_post or show_ev) and text is not None: offset_box = mpl.offsetbox.TextArea(text, textprops) artist = mpl.offsetbox.AnnotationBbox( # offset_box, (x + 5, y), xybox=(20., 5.), offset_box, (x, y + 5), xybox=(4., 20.), #box_alignment=(0, 0), box_alignment=(.5, 0), **textkw) offset_box_list.append(offset_box) artist_list.append(artist) if show_prior and prior_text is not None: offset_box2 = mpl.offsetbox.TextArea(prior_text, textprops) artist2 = mpl.offsetbox.AnnotationBbox( # offset_box2, (x - 5, y), xybox=(-20., -15.), # offset_box2, (x, y - 5), xybox=(-15., -20.), offset_box2, (x, y - 5), xybox=(-4, -20.), #box_alignment=(1, 1), box_alignment=(.5, 1), **textkw) offset_box_list.append(offset_box2) artist_list.append(artist2) for artist in artist_list: ax.add_artist(artist) xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) fig = pt.gcf() title = 'num_names=%r, num_annots=%r' % ( model.num_names, num_annots, ) map_assign = kwargs.get('map_assign', None) #max_marginal_list = [] #for name, marginal in marginalized_joints.items(): # states = list(ut.iprod(*marginal.statenames)) # vals = marginal.values.ravel() # x = vals.argmax() # max_marginal_list += ['P(' + ', '.join(states[x]) + ') = ' + str(vals[x])] # title += str(marginal) top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: # title += '\nMAP=' + ut.repr2(map_assign, strvals=True) title += '\nMAP: ' + map_assign + ' @' + '%.2f%%' % ( 100 * map_prob, ) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) #pt.set_xlabel() def hack_fix_centeralign(): if textprops['horizontalalignment'] == 'center': print('Fixing centeralign') fig = pt.gcf() fig.canvas.draw() # Superhack for centered text. Fix bug in # /usr/local/lib/python2.7/dist-packages/matplotlib/offsetbox.py # /usr/local/lib/python2.7/dist-packages/matplotlib/text.py for offset_box in offset_box_list: offset_box.set_offset z = offset_box._text.get_window_extent() (z.x1 - z.x0) / 2 offset_box._text T = offset_box._text.get_transform() A = mpl.transforms.Affine2D() A.clear() A.translate((z.x1 - z.x0) / 2, 0) offset_box._text.set_transform(T + A) hack_fix_centeralign() top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: bin_labels = ut.get_list_column(top_assignments, 0) bin_vals = ut.get_list_column(top_assignments, 1) # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels] pt.draw_histogram( bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))), transpose=True, use_darkbackground=False, #xtick_rotation=-10, ylabel='Prob', xlabel='assignment') pt.set_title('Assignment probabilities')
def show_hud(self): """ Creates heads up display button bar on bottom and title string Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.interact.interact_name import * # NOQA >>> # build test data >>> self = testsdata_match_verification('PZ_MTEST', 30, 32) >>> # execute function >>> result = self.show_hud() >>> # verify results >>> print(result) >>> ut.quit_if_noshow(): >>> self.show_page() >>> pt.show_if_requested() """ # Button positioners hl_slot, hr_slot = pt.make_bbox_positioners(y=.02, w=.15, h=.063, xpad=.02, startx=0, stopx=1) # hack make a second bbox positioner to get different sized buttons on # # the left hl_slot2, hr_slot2 = pt.make_bbox_positioners(y=.02, w=.08, h=.05, xpad=.015, startx=0, stopx=1) def next_rect(accum=[-1]): accum[0] += 1 return hr_slot(accum[0]) def next_rect2(accum=[-1]): accum[0] += 1 return hl_slot2(accum[0]) ibs = self.ibs name1, name2 = self.name1, self.name2 nid1_is_known = not ibs.is_nid_unknown(self.nid1) nid2_is_known = not ibs.is_nid_unknown(self.nid2) all_nid_list = ibs.get_annot_name_rowids(self.all_aid_list) is_unknown = ibs.is_nid_unknown(all_nid_list) is_name1 = [nid == self.nid1 for nid in all_nid_list] is_name2 = [nid == self.nid2 for nid in all_nid_list] # option to remove all names only if at least one name exists if not all(is_unknown): unname_all_text = 'remove all names' self.append_button(unname_all_text, callback=self.unname_all, rect=next_rect()) # option to merge all into a new name if all are unknown if all(is_unknown) and not nid1_is_known and not nid2_is_known: joinnew_text = 'match all (nonjunk)\n to a new name' self.append_button(joinnew_text, callback=self.merge_nonjunk_into_new_name, rect=next_rect()) # option dismiss all and give new names to all nonjunk images if any(is_unknown): self.append_button('mark all unknowns\nas not matching', callback=self.dismiss_all, rect=next_rect()) # merges all into the first name if nid1_is_known and not all(is_name1): join1_text = 'match all to name1:\n{name1}'.format(name1=name1) callback = functools.partial(self.merge_all_into_nid, self.nid1) self.append_button(join1_text, callback=callback, rect=next_rect()) # merges all into the seoncd name if name1 != name2 and nid2_is_known and not all(is_name2): join2_text = 'match all to name2:\n{name2}'.format(name2=name2) callback = functools.partial(self.merge_all_into_nid, self.nid2) self.append_button(join2_text, callback=callback, rect=next_rect()) ### self.append_button('close', callback=self.close_, rect=next_rect2()) if self.qres_callback is not None: self.append_button('review', callback=self.review, rect=next_rect2()) self.append_button('reset', callback=self.reset_all_names, rect=next_rect2()) self.dbname = ibs.get_dbname() self.vsstr = 'qaid%d-vs-aid%d' % (self.aid1, self.aid2) figtitle_fmt = ''' Match Review Interface - {dbname} {match_text}: {vsstr} ''' figtitle = figtitle_fmt.format( **self.__dict__) # sexy: using obj dict as fmtkw pt.set_figtitle(figtitle)
def test_score_normalization(): """ CommandLine: python ibeis/algo/hots/score_normalization.py --test-test_score_normalization python dev.py -t custom --cfg codename:vsone_unnorm --db PZ_MTEST --allgt --vf --va python dev.py -t custom --cfg codename:vsone_unnorm --db PZ_MTEST --allgt --vf --va --index 0:8:3 --dindex 0:10 --verbose Example: >>> # DISABLE_DOCTEST >>> #from ibeis.algo.hots import score_normalization >>> #score_normalization.rrr() >>> from ibeis.algo.hots.score_normalization import * # NOQA >>> locals_ = test_score_normalization() >>> execstr = ut.execstr_dict(locals_) >>> #print(execstr) >>> exec(execstr) >>> import plottool as pt >>> exec(pt.present()) """ import ibeis import plottool as pt # NOQA # Load IBEIS database dbname = 'PZ_MTEST' #dbname = 'GZ_ALL' ibs = ibeis.opendb(dbname) qaid_list = daid_list = ibs.get_valid_aids() # Get unnormalized query results #cfgdict = dict(codename='nsum_unnorm') cfgdict = dict(codename='vsone_unnorm') cm_list = ibs.query_chips(qaid_list, daid_list, cfgdict, return_cm=True) # Get a training sample datatup = get_ibeis_score_training_data(ibs, cm_list) (tp_support, tn_support, tp_support_labels, tn_support_labels) = datatup # Print raw score statistics ut.print_stats(tp_support, lbl='tp_support') ut.print_stats(tn_support, lbl='tn_support') normkw_list = ut.util_dict.all_dict_combinations( { 'monotonize': [True], # [True, False], #'adjust': [1, 4, 8], 'adjust': [4, 8], #'adjust': [8], } ) if len(normkw_list) > 32: raise AssertionError('Too many plots to test!') fnum = pt.next_fnum() true_color = pt.TRUE_BLUE # pt.TRUE_GREEN false_color = pt.FALSE_RED unknown_color = pt.UNKNOWN_PURP pt.plots.plot_sorted_scores( (tn_support, tp_support), ('true negative scores', 'true positive scores'), score_colors=(false_color, true_color), #logscale=True, logscale=False, figtitle='sorted nscores', fnum=fnum) for normkw in normkw_list: # Learn the appropriate normalization #normkw = {} # dict(gridsize=1024, adjust=8, clip_factor=ut.PHI + 1, return_all=True) (score_domain, p_tp_given_score, p_tn_given_score, p_score_given_tp, p_score_given_tn, p_score, clip_score) = learn_score_normalization(tp_support, tn_support, return_all=True, **normkw) assert clip_score > tn_support.max() inspect_pdfs(tn_support, tp_support, score_domain, p_tp_given_score, p_tn_given_score, p_score_given_tp, p_score_given_tn, p_score) pt.set_figtitle('ScoreNorm ' + ibs.get_dbname() + ' ' + ut.dict_str(normkw)) locals_ = locals() return locals_
def show_ori_image_ondisk(): r""" Args: img (ndarray[uint8_t, ndim=2]): image data ori (?): gmag (?): CommandLine: python -m vtool.histogram --test-show_ori_image_ondisk --show python -m vtool.histogram --test-show_ori_image_ondisk --show --patch_img_fpath patches/KP_0_PATCH.png --ori_img_fpath patches/KP_0_orientations01.png --weights_img_fpath patches/KP_0_WEIGHTS.png --grady_img_fpath patches/KP_0_ygradient.png --gradx_img_fpath patches/KP_0_xgradient.png --title cpp_show_ori_ondisk python -m pyhesaff._pyhesaff --test-test_rot_invar --show --rebuild-hesaff --no-rmbuild Example: >>> # DISABLE_DOCTEST >>> from vtool.histogram import * # NOQA >>> import plottool as pt >>> import vtool as vt >>> result = show_ori_image_ondisk() >>> pt.show_if_requested() """ #if img_fpath is not None: # img_fpath = ut.get_argval('--fpath', type_=str, default=ut.grab_test_imgpath('star.png')) # img_fpath = ut.get_argval('--fpath', type_=str, default=ut.grab_test_imgpath('star.png')) # img = vt.imread(img_fpath) # ori_img_fpath = ut.get_argval('--fpath-ori', type_=str, # default=ut.augpath(img_fpath, '_ori')) # weights_img_fpath = ut.get_argval('--fpath-weight', type_=str, # default=ut.augpath(img_fpath, '_mag')) # vt.imwrite(ori_img_fpath, vt.patch_ori(*vt.patch_gradient(img))) # vt.imwrite(weights_img_fpath, vt.patch_mag(*vt.patch_gradient(img))) import vtool as vt print('show_ori_image_ondisk') def parse_img_from_arg(argstr_): fpath = ut.get_argval(argstr_, type_=str, default='None') if fpath is not None and fpath != 'None': img = vt.imread(fpath, grayscale=True) print('Reading %s with stats %s' % (fpath, ut.get_stats_str(img, axis=None))) else: print('Did not read %s' % (fpath)) img = None return img patch = parse_img_from_arg('--patch_img_fpath') gori = parse_img_from_arg('--ori_img_fpath') / 255.0 * TAU weights = parse_img_from_arg('--weights_img_fpath') / 255.0 gradx = parse_img_from_arg('--gradx_img_fpath') / 255.0 grady = parse_img_from_arg('--grady_img_fpath') / 255.0 gauss = parse_img_from_arg('--gauss_weights_img_fpath') / 255.0 #print(' * ori_img_fpath = %r' % (ori_img_fpath,)) #print(' * weights_img_fpath = %r' % (weights_img_fpath,)) #print(' * gradx_img_fpath = %r' % (gradx_img_fpath,)) #print(' * grady_img_fpath = %r' % (grady_img_fpath,)) #import cv2 #cv2.imread(ori_img_fpath, cv2.IMREAD_UNCHANGED) show_ori_image(gori, weights, patch, gradx, grady, gauss) title = ut.get_argval('--title', default='') import plottool as pt pt.set_figtitle(title)
def show_hud(self): """ Creates heads up display """ # Button positioners hl_slot, hr_slot = pt.make_bbox_positioners(y=.02, w=.16, h=3 * ut.PHI_B**4, xpad=.05, startx=0, stopx=1) select_none_text = 'None of these' if self.suggest_aids is not None and len(self.suggest_aids) == 0: select_none_text += '\n(SUGGESTED BY IBEIS)' none_tup = self.append_button(select_none_text, callback=partial(self.select_none), rect=hl_slot(0)) #Draw boarder around the None of these button none_button_axis = none_tup[1] if self.other_checkbox_states['none']: pt.draw_border(none_button_axis, color=(0, 1, 0), lw=4, adjust=False) else: pt.draw_border(none_button_axis, color=(.7, .7, .7), lw=4, adjust=False) select_junk_text = 'Junk Query Image' junk_tup = self.append_button(select_junk_text, callback=partial(self.select_junk), rect=hl_slot(1)) #Draw boarder around the None of these button junk_button_axis = junk_tup[1] if self.other_checkbox_states['junk']: pt.draw_border(junk_button_axis, color=(0, 1, 0), lw=4, adjust=False) else: pt.draw_border(junk_button_axis, color=(.7, .7, .7), lw=4, adjust=False) #Add other HUD buttons self.append_button('Quit', callback=partial(self.quit), rect=hr_slot(0)) self.append_button('Confirm Selection', callback=partial(self.confirm), rect=hr_slot(1)) if self.progress_current is not None and self.progress_total is not None: self.progress_string = str(self.progress_current) + '/' + str( self.progress_total) else: self.progress_string = '' figtitle_fmt = ''' Animal Identification {progress_string} ''' figtitle = figtitle_fmt.format( **self.__dict__) # sexy: using obj dict as fmtkw pt.set_figtitle(figtitle)
def draw_bayesian_model(model, evidence={}, soft_evidence={}, fnum=None, pnum=None, **kwargs): from pgmpy.models import BayesianModel if not isinstance(model, BayesianModel): model = model.to_bayesian_model() import plottool as pt import networkx as nx kwargs = kwargs.copy() factor_list = kwargs.pop('factor_list', []) ttype_colors, ttype_scalars = make_colorcodes(model) textprops = { 'horizontalalignment': 'left', 'family': 'monospace', 'size': 8, } # build graph attrs tup = get_node_viz_attrs( model, evidence, soft_evidence, factor_list, ttype_colors, **kwargs) node_color, pos_list, pos_dict, takws = tup # draw graph has_infered = evidence or 'factor_list' in kwargs if False: fig = pt.figure(fnum=fnum, pnum=pnum, doclf=True) # NOQA ax = pt.gca() drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1100, node_color=node_color) nx.draw(model, **drawkw) else: # BE VERY CAREFUL if 1: graph = model.copy() graph.__class__ = nx.DiGraph graph.graph['groupattrs'] = ut.ddict(dict) #graph = model. if getattr(graph, 'ttype2_cpds', None) is not None: # Add invis edges and ttype groups for ttype in model.ttype2_cpds.keys(): ttype_cpds = model.ttype2_cpds[ttype] # use defined ordering ttype_nodes = ut.list_getattr(ttype_cpds, 'variable') # ttype_nodes = sorted(ttype_nodes) invis_edges = list(ut.itertwo(ttype_nodes)) graph.add_edges_from(invis_edges) nx.set_edge_attributes(graph, 'style', {edge: 'invis' for edge in invis_edges}) nx.set_node_attributes(graph, 'groupid', {node: ttype for node in ttype_nodes}) graph.graph['groupattrs'][ttype]['rank'] = 'same' graph.graph['groupattrs'][ttype]['cluster'] = False else: graph = model pt.show_nx(graph, layout_kw={'prog': 'dot'}, fnum=fnum, pnum=pnum, verbose=0) pt.zoom_factory() fig = pt.gcf() ax = pt.gca() pass hacks = [pt.draw_text_annotations(textprops=textprops, **takw) for takw in takws if takw] xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) if 'name' in model.ttype2_template: num_names = len(model.ttype2_template['name'].basis) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) title = 'num_names=%r, num_annots=%r' % (num_names, num_annots,) else: title = '' map_assign = kwargs.get('map_assign', None) def word_insert(text): return '' if len(text) == 0 else text + ' ' top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: title += '\n%sMAP: ' % (word_insert(kwargs.get('method', ''))) title += map_assign + ' @' + '%.2f%%' % (100 * map_prob,) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) for hack in hacks: hack() if has_infered: # Hack in colorbars # if ut.list_type(basis) is int: # pt.colorbar(scalars, colors, lbl='score', ticklabels=np.array(basis) + 1) # else: # pt.colorbar(scalars, colors, lbl='score', ticklabels=basis) keys = ['name', 'score'] locs = ['left', 'right'] for key, loc in zip(keys, locs): if key in ttype_colors: basis = model.ttype2_template[key].basis # scalars = colors = ttype_colors[key] scalars = ttype_scalars[key] pt.colorbar(scalars, colors, lbl=key, ticklabels=basis, ticklocation=loc)
def show_hud(self): """ Creates heads up display button bar on bottom and title string Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.interact.interact_name import * # NOQA >>> # build test data >>> self = testsdata_match_verification('PZ_MTEST', 30, 32) >>> # execute function >>> result = self.show_hud() >>> # verify results >>> print(result) >>> ut.quit_if_noshow(): >>> self.show_page() >>> pt.show_if_requested() """ # Button positioners hl_slot, hr_slot = pt.make_bbox_positioners(y=.02, w=.15, h=.063, xpad=.02, startx=0, stopx=1) # hack make a second bbox positioner to get different sized buttons on # # the left hl_slot2, hr_slot2 = pt.make_bbox_positioners(y=.02, w=.08, h=.05, xpad=.015, startx=0, stopx=1) def next_rect(accum=[-1]): accum[0] += 1 return hr_slot(accum[0]) def next_rect2(accum=[-1]): accum[0] += 1 return hl_slot2(accum[0]) ibs = self.ibs name1, name2 = self.name1, self.name2 nid1_is_known = not ibs.is_nid_unknown(self.nid1) nid2_is_known = not ibs.is_nid_unknown(self.nid2) all_nid_list = ibs.get_annot_name_rowids(self.all_aid_list) is_unknown = ibs.is_nid_unknown(all_nid_list) is_name1 = [nid == self.nid1 for nid in all_nid_list] is_name2 = [nid == self.nid2 for nid in all_nid_list] # option to remove all names only if at least one name exists if not all(is_unknown): unname_all_text = 'remove all names' self.append_button(unname_all_text, callback=self.unname_all, rect=next_rect()) # option to merge all into a new name if all are unknown if all(is_unknown) and not nid1_is_known and not nid2_is_known: joinnew_text = 'match all (nonjunk)\n to a new name' self.append_button(joinnew_text, callback=self.merge_nonjunk_into_new_name, rect=next_rect()) # option dismiss all and give new names to all nonjunk images if any(is_unknown): self.append_button('mark all unknowns\nas not matching', callback=self.dismiss_all, rect=next_rect()) # merges all into the first name if nid1_is_known and not all(is_name1): join1_text = 'match all to name1:\n{name1}'.format(name1=name1) callback = functools.partial(self.merge_all_into_nid, self.nid1) self.append_button(join1_text, callback=callback, rect=next_rect()) # merges all into the seoncd name if name1 != name2 and nid2_is_known and not all(is_name2): join2_text = 'match all to name2:\n{name2}'.format(name2=name2) callback = functools.partial(self.merge_all_into_nid, self.nid2) self.append_button(join2_text, callback=callback, rect=next_rect()) ### self.append_button('close', callback=self.close_, rect=next_rect2()) if self.qres_callback is not None: self.append_button('review', callback=self.review, rect=next_rect2()) self.append_button('reset', callback=self.reset_all_names, rect=next_rect2()) self.dbname = ibs.get_dbname() self.vsstr = ibsfuncs.vsstr(self.aid1, self.aid2) figtitle_fmt = ''' Match Review Interface - {dbname} {match_text}: {vsstr} ''' figtitle = figtitle_fmt.format(**self.__dict__) # sexy: using obj dict as fmtkw pt.set_figtitle(figtitle)
def draw_bayesian_model(model, evidence={}, soft_evidence={}, fnum=None, pnum=None, **kwargs): from pgmpy.models import BayesianModel if not isinstance(model, BayesianModel): model = model.to_bayesian_model() import plottool as pt import networkx as nx kwargs = kwargs.copy() factor_list = kwargs.pop('factor_list', []) ttype_colors, ttype_scalars = make_colorcodes(model) textprops = { 'horizontalalignment': 'left', 'family': 'monospace', 'size': 8, } # build graph attrs tup = get_node_viz_attrs(model, evidence, soft_evidence, factor_list, ttype_colors, **kwargs) node_color, pos_list, pos_dict, takws = tup # draw graph has_infered = evidence or 'factor_list' in kwargs if False: fig = pt.figure(fnum=fnum, pnum=pnum, doclf=True) # NOQA ax = pt.gca() drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1100, node_color=node_color) nx.draw(model, **drawkw) else: # BE VERY CAREFUL if 1: graph = model.copy() graph.__class__ = nx.DiGraph graph.graph['groupattrs'] = ut.ddict(dict) #graph = model. if getattr(graph, 'ttype2_cpds', None) is not None: # Add invis edges and ttype groups for ttype in model.ttype2_cpds.keys(): ttype_cpds = model.ttype2_cpds[ttype] # use defined ordering ttype_nodes = ut.list_getattr(ttype_cpds, 'variable') # ttype_nodes = sorted(ttype_nodes) invis_edges = list(ut.itertwo(ttype_nodes)) graph.add_edges_from(invis_edges) nx.set_edge_attributes( graph, 'style', {edge: 'invis' for edge in invis_edges}) nx.set_node_attributes( graph, 'groupid', {node: ttype for node in ttype_nodes}) graph.graph['groupattrs'][ttype]['rank'] = 'same' graph.graph['groupattrs'][ttype]['cluster'] = False else: graph = model pt.show_nx(graph, layout_kw={'prog': 'dot'}, fnum=fnum, pnum=pnum, verbose=0) pt.zoom_factory() fig = pt.gcf() ax = pt.gca() pass hacks = [ pt.draw_text_annotations(textprops=textprops, **takw) for takw in takws if takw ] xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) if 'name' in model.ttype2_template: num_names = len(model.ttype2_template['name'].basis) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) title = 'num_names=%r, num_annots=%r' % ( num_names, num_annots, ) else: title = '' map_assign = kwargs.get('map_assign', None) def word_insert(text): return '' if len(text) == 0 else text + ' ' top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: title += '\n%sMAP: ' % (word_insert(kwargs.get('method', ''))) title += map_assign + ' @' + '%.2f%%' % (100 * map_prob, ) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) for hack in hacks: hack() if has_infered: # Hack in colorbars # if ut.list_type(basis) is int: # pt.colorbar(scalars, colors, lbl='score', ticklabels=np.array(basis) + 1) # else: # pt.colorbar(scalars, colors, lbl='score', ticklabels=basis) keys = ['name', 'score'] locs = ['left', 'right'] for key, loc in zip(keys, locs): if key in ttype_colors: basis = model.ttype2_template[key].basis # scalars = colors = ttype_colors[key] scalars = ttype_scalars[key] pt.colorbar(scalars, colors, lbl=key, ticklabels=basis, ticklocation=loc)
def augment_nnindexer_experiment(): """ References: http://answers.opencv.org/question/44592/flann-index-training-fails-with-segfault/ CommandLine: utprof.py -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_MTEST --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6 python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6 --nosave-flann --show python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6 --nosave-flann --show python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6 --nosave-flann --no-api-cache --nocache-uuids python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_MTEST --show python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --show # RUNS THE SEGFAULTING CASE python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --show # Debug it gdb python run -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --show gdb python run -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6 Example: >>> # DISABLE_DOCTEST >>> from ibeis.algo.hots._neighbor_experiment import * # NOQA >>> # execute function >>> augment_nnindexer_experiment() >>> # verify results >>> ut.show_if_requested() """ import ibeis # build test data #ibs = ibeis.opendb('PZ_MTEST') ibs = ibeis.opendb(defaultdb='PZ_Master0') if ibs.get_dbname() == 'PZ_MTEST': initial = 1 addition_stride = 4 max_ceiling = 100 elif ibs.get_dbname() == 'PZ_Master0': initial = 128 #addition_stride = 64 #addition_stride = 128 addition_stride = 256 max_ceiling = 10000 #max_ceiling = 4000 #max_ceiling = 2000 #max_ceiling = 600 else: assert False all_daids = ibs.get_valid_aids(species='zebra_plains') qreq_ = ibs.new_query_request(all_daids, all_daids) max_num = min(max_ceiling, len(all_daids)) # Clear Caches ibs.delete_flann_cachedir() neighbor_index_cache.clear_memcache() neighbor_index_cache.clear_uuid_cache(qreq_) # Setup all_randomize_daids_ = ut.deterministic_shuffle(all_daids[:]) # ensure all features are computed #ibs.get_annot_vecs(all_randomize_daids_, ensure=True) #ibs.get_annot_fgweights(all_randomize_daids_, ensure=True) nnindexer_list = [] addition_lbl = 'Addition' _addition_iter = list(range(initial + 1, max_num, addition_stride)) addition_iter = iter(ut.ProgressIter(_addition_iter, lbl=addition_lbl, freq=1, autoadjust=False)) time_list_addition = [] #time_list_reindex = [] addition_count_list = [] tmp_cfgstr_list = [] #for _ in range(80): # next(addition_iter) try: memtrack = ut.MemoryTracker(disable=False) for count in addition_iter: aid_list_ = all_randomize_daids_[0:count] # Request an indexer which could be an augmented version of an existing indexer. with ut.Timer(verbose=False) as t: memtrack.report('BEFORE AUGMENT') nnindexer_ = neighbor_index_cache.request_augmented_ibeis_nnindexer(qreq_, aid_list_) memtrack.report('AFTER AUGMENT') nnindexer_list.append(nnindexer_) addition_count_list.append(count) time_list_addition.append(t.ellapsed) tmp_cfgstr_list.append(nnindexer_.cfgstr) print('===============\n\n') print(ut.list_str(time_list_addition)) print(ut.list_str(list(map(id, nnindexer_list)))) print(ut.list_str(tmp_cfgstr_list)) print(ut.list_str(list([nnindxer.cfgstr for nnindxer in nnindexer_list]))) IS_SMALL = False if IS_SMALL: nnindexer_list = [] reindex_label = 'Reindex' # go backwards for reindex _reindex_iter = list(range(initial + 1, max_num, addition_stride))[::-1] reindex_iter = ut.ProgressIter(_reindex_iter, lbl=reindex_label) time_list_reindex = [] #time_list_reindex = [] reindex_count_list = [] for count in reindex_iter: print('\n+===PREDONE====================\n') # check only a single size for memory leaks #count = max_num // 16 + ((x % 6) * 1) #x += 1 aid_list_ = all_randomize_daids_[0:count] # Call the same code, but force rebuilds memtrack.report('BEFORE REINDEX') with ut.Timer(verbose=False) as t: nnindexer_ = neighbor_index_cache.request_augmented_ibeis_nnindexer( qreq_, aid_list_, force_rebuild=True, memtrack=memtrack) memtrack.report('AFTER REINDEX') ibs.print_cachestats_str() print('[nnindex.MEMCACHE] size(NEIGHBOR_CACHE) = %s' % ( ut.get_object_size_str(neighbor_index_cache.NEIGHBOR_CACHE.items()),)) print('[nnindex.MEMCACHE] len(NEIGHBOR_CACHE) = %s' % ( len(neighbor_index_cache.NEIGHBOR_CACHE.items()),)) print('[nnindex.MEMCACHE] size(UUID_MAP_CACHE) = %s' % ( ut.get_object_size_str(neighbor_index_cache.UUID_MAP_CACHE),)) print('totalsize(nnindexer) = ' + ut.get_object_size_str(nnindexer_)) memtrack.report_type(neighbor_index_cache.NeighborIndex) ut.print_object_size_tree(nnindexer_, lbl='nnindexer_') if IS_SMALL: nnindexer_list.append(nnindexer_) reindex_count_list.append(count) time_list_reindex.append(t.ellapsed) #import cv2 #import matplotlib as mpl #print(mem_top.mem_top(limit=30, width=120, # #exclude_refs=[cv2.__dict__, mpl.__dict__] # )) print('L___________________\n\n\n') print(ut.list_str(time_list_reindex)) if IS_SMALL: print(ut.list_str(list(map(id, nnindexer_list)))) print(ut.list_str(list([nnindxer.cfgstr for nnindxer in nnindexer_list]))) except KeyboardInterrupt: print('\n[train] Caught CRTL+C') resolution = '' from six.moves import input while not (resolution.isdigit()): print('\n[train] What do you want to do?') print('[train] 0 - Continue') print('[train] 1 - Embed') print('[train] ELSE - Stop network training') resolution = input('[train] Resolution: ') resolution = int(resolution) # We have a resolution if resolution == 0: print('resuming training...') elif resolution == 1: ut.embed() import plottool as pt next_fnum = iter(range(0, 1)).next # python3 PY3 pt.figure(fnum=next_fnum()) if len(addition_count_list) > 0: pt.plot2(addition_count_list, time_list_addition, marker='-o', equal_aspect=False, x_label='num_annotations', label=addition_lbl + ' Time') if len(reindex_count_list) > 0: pt.plot2(reindex_count_list, time_list_reindex, marker='-o', equal_aspect=False, x_label='num_annotations', label=reindex_label + ' Time') pt.set_figtitle('Augmented indexer experiment') pt.legend()
def test_siamese_performance(model, data, labels, flat_metadata, dataname=''): r""" CommandLine: utprof.py -m ibeis_cnn --tf pz_patchmatch --db liberty --test --weights=liberty:current --arch=siaml2_128 --test python -m ibeis_cnn --tf netrun --db liberty --arch=siaml2_128 --test --ensure python -m ibeis_cnn --tf netrun --db liberty --arch=siaml2_128 --test --ensure --weights=new python -m ibeis_cnn --tf netrun --db liberty --arch=siaml2_128 --train --weights=new python -m ibeis_cnn --tf netrun --db pzmtest --weights=liberty:current --arch=siaml2_128 --test # NOQA python -m ibeis_cnn --tf netrun --db pzmtest --weights=liberty:current --arch=siaml2_128 """ import vtool as vt import plottool as pt # TODO: save in model.trainind_dpath/diagnostics/figures ut.colorprint('\n[siam_perf] Testing Siamese Performance', 'white') #epoch_dpath = model.get_epoch_diagnostic_dpath() epoch_dpath = model.arch_dpath ut.vd(epoch_dpath) dataname += ' ' + model.get_history_hashid() + '\n' history_text = ut.list_str(model.era_history, newlines=True) ut.write_to(ut.unixjoin(epoch_dpath, 'era_history.txt'), history_text) #if True: # import matplotlib as mpl # mpl.rcParams['agg.path.chunksize'] = 100000 #data = data[::50] #labels = labels[::50] #from ibeis_cnn import utils #data, labels = utils.random_xy_sample(data, labels, 10000, model.data_per_label_input) FULL = not ut.get_argflag('--quick') fnum_gen = pt.make_fnum_nextgen() ut.colorprint('[siam_perf] Show era history', 'white') fig = model.show_era_loss(fnum=fnum_gen()) pt.save_figure(fig=fig, dpath=epoch_dpath, dpi=180) # hack ut.colorprint('[siam_perf] Show weights image', 'white') fig = model.show_weights_image(fnum=fnum_gen()) pt.save_figure(fig=fig, dpath=epoch_dpath, dpi=180) #model.draw_all_conv_layer_weights(fnum=fnum_gen()) #model.imwrite_weights(1) #model.imwrite_weights(2) # Compute each type of score ut.colorprint('[siam_perf] Building Scores', 'white') test_outputs = model.predict2(model, data) network_output = test_outputs['network_output_determ'] # hack converting network output to distances for non-descriptor networks if len(network_output.shape) == 2 and network_output.shape[1] == 1: cnn_scores = network_output.T[0] elif len(network_output.shape) == 1: cnn_scores = network_output elif len(network_output.shape) == 2 and network_output.shape[1] > 1: assert model.data_per_label_output == 2 vecs1 = network_output[0::2] vecs2 = network_output[1::2] cnn_scores = vt.L2(vecs1, vecs2) else: assert False cnn_scores = cnn_scores.astype(np.float64) # Segfaults with the data passed in is large (AND MEMMAPPED apparently) # Fixed in hesaff implementation SIFT = FULL if SIFT: sift_scores, sift_list = test_sift_patchmatch_scores(data, labels) sift_scores = sift_scores.astype(np.float64) ut.colorprint('[siam_perf] Learning Encoders', 'white') # Learn encoders encoder_kw = { #'monotonize': False, 'monotonize': True, } cnn_encoder = vt.ScoreNormalizer(**encoder_kw) cnn_encoder.fit(cnn_scores, labels) if SIFT: sift_encoder = vt.ScoreNormalizer(**encoder_kw) sift_encoder.fit(sift_scores, labels) # Visualize ut.colorprint('[siam_perf] Visualize Encoders', 'white') viz_kw = dict( with_scores=False, with_postbayes=False, with_prebayes=False, target_tpr=.95, ) inter_cnn = cnn_encoder.visualize( figtitle=dataname + ' CNN scores. #data=' + str(len(data)), fnum=fnum_gen(), **viz_kw) if SIFT: inter_sift = sift_encoder.visualize( figtitle=dataname + ' SIFT scores. #data=' + str(len(data)), fnum=fnum_gen(), **viz_kw) # Save pt.save_figure(fig=inter_cnn.fig, dpath=epoch_dpath) if SIFT: pt.save_figure(fig=inter_sift.fig, dpath=epoch_dpath) # Save out examples of hard errors #cnn_fp_label_indicies, cnn_fn_label_indicies = #cnn_encoder.get_error_indicies(cnn_scores, labels) #sift_fp_label_indicies, sift_fn_label_indicies = #sift_encoder.get_error_indicies(sift_scores, labels) with_patch_examples = FULL if with_patch_examples: ut.colorprint('[siam_perf] Visualize Confusion Examples', 'white') cnn_indicies = cnn_encoder.get_confusion_indicies(cnn_scores, labels) if SIFT: sift_indicies = sift_encoder.get_confusion_indicies(sift_scores, labels) warped_patch1_list, warped_patch2_list = list(zip(*ut.ichunks(data, 2))) samp_args = (warped_patch1_list, warped_patch2_list, labels) _sample = functools.partial(draw_results.get_patch_sample_img, *samp_args) cnn_fp_img = _sample({'fs': cnn_scores}, cnn_indicies.fp)[0] cnn_fn_img = _sample({'fs': cnn_scores}, cnn_indicies.fn)[0] cnn_tp_img = _sample({'fs': cnn_scores}, cnn_indicies.tp)[0] cnn_tn_img = _sample({'fs': cnn_scores}, cnn_indicies.tn)[0] if SIFT: sift_fp_img = _sample({'fs': sift_scores}, sift_indicies.fp)[0] sift_fn_img = _sample({'fs': sift_scores}, sift_indicies.fn)[0] sift_tp_img = _sample({'fs': sift_scores}, sift_indicies.tp)[0] sift_tn_img = _sample({'fs': sift_scores}, sift_indicies.tn)[0] #if ut.show_was_requested(): #def rectify(arr): # return np.flipud(arr) SINGLE_FIG = False if SINGLE_FIG: def dump_img(img_, lbl, fnum): fig, ax = pt.imshow(img_, figtitle=dataname + ' ' + lbl, fnum=fnum) pt.save_figure(fig=fig, dpath=epoch_dpath, dpi=180) dump_img(cnn_fp_img, 'cnn_fp_img', fnum_gen()) dump_img(cnn_fn_img, 'cnn_fn_img', fnum_gen()) dump_img(cnn_tp_img, 'cnn_tp_img', fnum_gen()) dump_img(cnn_tn_img, 'cnn_tn_img', fnum_gen()) dump_img(sift_fp_img, 'sift_fp_img', fnum_gen()) dump_img(sift_fn_img, 'sift_fn_img', fnum_gen()) dump_img(sift_tp_img, 'sift_tp_img', fnum_gen()) dump_img(sift_tn_img, 'sift_tn_img', fnum_gen()) #vt.imwrite(dataname + '_' + 'cnn_fp_img.png', (cnn_fp_img)) #vt.imwrite(dataname + '_' + 'cnn_fn_img.png', (cnn_fn_img)) #vt.imwrite(dataname + '_' + 'sift_fp_img.png', (sift_fp_img)) #vt.imwrite(dataname + '_' + 'sift_fn_img.png', (sift_fn_img)) else: print('Drawing TP FP TN FN') fnum = fnum_gen() pnum_gen = pt.make_pnum_nextgen(4, 2) fig = pt.figure(fnum) pt.imshow(cnn_fp_img, title='CNN FP', fnum=fnum, pnum=pnum_gen()) pt.imshow(sift_fp_img, title='SIFT FP', fnum=fnum, pnum=pnum_gen()) pt.imshow(cnn_fn_img, title='CNN FN', fnum=fnum, pnum=pnum_gen()) pt.imshow(sift_fn_img, title='SIFT FN', fnum=fnum, pnum=pnum_gen()) pt.imshow(cnn_tp_img, title='CNN TP', fnum=fnum, pnum=pnum_gen()) pt.imshow(sift_tp_img, title='SIFT TP', fnum=fnum, pnum=pnum_gen()) pt.imshow(cnn_tn_img, title='CNN TN', fnum=fnum, pnum=pnum_gen()) pt.imshow(sift_tn_img, title='SIFT TN', fnum=fnum, pnum=pnum_gen()) pt.set_figtitle(dataname + ' confusions') pt.adjust_subplots(left=0, right=1.0, bottom=0., wspace=.01, hspace=.05) pt.save_figure(fig=fig, dpath=epoch_dpath, dpi=180, figsize=(9, 18)) with_patch_desc = FULL if with_patch_desc: ut.colorprint('[siam_perf] Visualize Patch Descriptors', 'white') fnum = fnum_gen() fig = pt.figure(fnum=fnum, pnum=(1, 1, 1)) num_rows = 7 pnum_gen = pt.make_pnum_nextgen(num_rows, 3) # Compare actual output descriptors for index in ut.random_indexes(len(sift_list), num_rows): vec_sift = sift_list[index] vec_cnn = network_output[index] patch = data[index] pt.imshow(patch, fnum=fnum, pnum=pnum_gen()) pt.plot_descriptor_signature(vec_cnn, 'cnn vec', fnum=fnum, pnum=pnum_gen()) pt.plot_sift_signature(vec_sift, 'sift vec', fnum=fnum, pnum=pnum_gen()) pt.set_figtitle('Patch Descriptors') pt.adjust_subplots(left=0, right=0.95, bottom=0., wspace=.1, hspace=.15) pt.save_figure(fig=fig, dpath=epoch_dpath, dpi=180, figsize=(9, 18))
def myquery(): r""" BUG:: THERE IS A BUG SOMEWHERE: HOW IS THIS POSSIBLE? if everything is weightd ) how di the true positive even get a score while the true negative did not qres_copy.filtkey_list = ['ratio', 'fg', 'homogerr', 'distinctiveness'] CORRECT STATS { 'max' : [0.832, 0.968, 0.604, 0.000], 'min' : [0.376, 0.524, 0.000, 0.000], 'mean' : [0.561, 0.924, 0.217, 0.000], 'std' : [0.114, 0.072, 0.205, 0.000], 'nMin' : [1, 1, 1, 51], 'nMax' : [1, 1, 1, 1], 'shape': (52, 4), } INCORRECT STATS { 'max' : [0.759, 0.963, 0.264, 0.000], 'min' : [0.379, 0.823, 0.000, 0.000], 'mean' : [0.506, 0.915, 0.056, 0.000], 'std' : [0.125, 0.039, 0.078, 0.000], 'nMin' : [1, 1, 1, 24], 'nMax' : [1, 1, 1, 1], 'shape': (26, 4), # score_diff, tp_score, tn_score, p, K, dcvs_clip_max, fg_power, homogerr_power 0.494, 0.494, 0.000, 73.000, 2, 0.500, 0.100, 10.000 see how seperability changes as we very things CommandLine: python -m ibeis.algo.hots.devcases --test-myquery python -m ibeis.algo.hots.devcases --test-myquery --show --index 0 python -m ibeis.algo.hots.devcases --test-myquery --show --index 1 python -m ibeis.algo.hots.devcases --test-myquery --show --index 2 References: http://en.wikipedia.org/wiki/Pareto_distribution <- look into Example: >>> # DISABLE_DOCTEST >>> from ibeis.all_imports import * # NOQA >>> from ibeis.algo.hots.devcases import * # NOQA >>> ut.dev_ipython_copypaster(myquery) if ut.inIPython() else myquery() >>> pt.show_if_requested() """ from ibeis.algo.hots import special_query # NOQA from ibeis.algo.hots import distinctiveness_normalizer # NOQA from ibeis import viz # NOQA import plottool as pt index = ut.get_argval('--index', int, 0) ibs, aid1, aid2, tn_aid = testdata_my_exmaples(index) qaids = [aid1] daids = [aid2] + [tn_aid] qvuuid = ibs.get_annot_visual_uuids(aid1) cfgdict_vsone = dict( sv_on=True, #sv_on=False, #codename='vsone_unnorm_dist_ratio_extern_distinctiveness', codename='vsone_unnorm_ratio_extern_distinctiveness', sver_output_weighting=True, ) use_cache = False save_qcache = False qres_list, qreq_ = ibs.query_chips(qaids, daids, cfgdict=cfgdict_vsone, return_request=True, use_cache=use_cache, save_qcache=save_qcache, verbose=True) qreq_.load_distinctiveness_normalizer() qres = qres_list[0] top_aids = qres.get_top_aids() # NOQA qres_orig = qres # NOQA def test_config(qreq_, qres_orig, cfgdict): """ function to grid search over """ qres_copy = copy.deepcopy(qres_orig) qreq_vsone_ = qreq_ qres_vsone = qres_copy filtkey = hstypes.FiltKeys.DISTINCTIVENESS newfsv_list, newscore_aids = special_query.get_extern_distinctiveness( qreq_, qres_copy, **cfgdict) special_query.apply_new_qres_filter_scores(qreq_vsone_, qres_vsone, newfsv_list, newscore_aids, filtkey) tp_score = qres_copy.aid2_score[aid2] tn_score = qres_copy.aid2_score[tn_aid] return qres_copy, tp_score, tn_score #[.01, .1, .2, .5, .6, .7, .8, .9, 1.0]), #FiltKeys = hstypes.FiltKeys # FIXME: Use other way of doing gridsearch grid_basis = distinctiveness_normalizer.DCVS_DEFAULT.get_grid_basis() gridsearch = ut.GridSearch(grid_basis, label='qvuuid=%r' % (qvuuid, )) print('Begin Grid Search') for cfgdict in ut.ProgressIter(gridsearch, lbl='GridSearch'): qres_copy, tp_score, tn_score = test_config(qreq_, qres_orig, cfgdict) gridsearch.append_result(tp_score, tn_score) print('Finish Grid Search') # Get best result best_cfgdict = gridsearch.get_rank_cfgdict() qres_copy, tp_score, tn_score = test_config(qreq_, qres_orig, best_cfgdict) # Examine closely what you can do with scores if False: qres_copy = copy.deepcopy(qres_orig) qreq_vsone_ = qreq_ filtkey = hstypes.FiltKeys.DISTINCTIVENESS newfsv_list, newscore_aids = special_query.get_extern_distinctiveness( qreq_, qres_copy, **cfgdict) ut.embed() def make_cm_very_old_tuple(qres_copy): assert ut.listfind(qres_copy.filtkey_list, filtkey) is None weight_filters = hstypes.WEIGHT_FILTERS weight_filtxs, nonweight_filtxs = special_query.index_partition( qres_copy.filtkey_list, weight_filters) aid2_fsv = {} aid2_fs = {} aid2_score = {} for new_fsv_vsone, daid in zip(newfsv_list, newscore_aids): pass break #scorex_vsone = ut.listfind(qres_copy.filtkey_list, filtkey) #if scorex_vsone is None: # TODO: add spatial verification as a filter score # augment the vsone scores # TODO: paramaterize weighted_ave_score = True if weighted_ave_score: # weighted average scoring new_fs_vsone = special_query.weighted_average_scoring( new_fsv_vsone, weight_filtxs, nonweight_filtxs) else: # product scoring new_fs_vsone = special_query.product_scoring(new_fsv_vsone) new_score_vsone = new_fs_vsone.sum() aid2_fsv[daid] = new_fsv_vsone aid2_fs[daid] = new_fs_vsone aid2_score[daid] = new_score_vsone return aid2_fsv, aid2_fs, aid2_score # Look at plot of query products for new_fsv_vsone, daid in zip(newfsv_list, newscore_aids): new_fs_vsone = special_query.product_scoring(new_fsv_vsone) scores_list = np.array(new_fs_vsone)[:, None].T pt.plot_sorted_scores(scores_list, logscale=False, figtitle=str(daid)) pt.iup() special_query.apply_new_qres_filter_scores(qreq_vsone_, qres_copy, newfsv_list, newscore_aids, filtkey) # PRINT INFO import functools #ut.rrrr() get_stats_str = functools.partial(ut.get_stats_str, axis=0, newlines=True, precision=3) tp_stats_str = ut.align(get_stats_str(qres_copy.aid2_fsv[aid2]), ':') tn_stats_str = ut.align(get_stats_str(qres_copy.aid2_fsv[tn_aid]), ':') info_str_list = [] info_str_list.append('qres_copy.filtkey_list = %r' % (qres_copy.filtkey_list, )) info_str_list.append('CORRECT STATS') info_str_list.append(tp_stats_str) info_str_list.append('INCORRECT STATS') info_str_list.append(tn_stats_str) info_str = '\n'.join(info_str_list) print(info_str) # SHOW BEST RESULT #qres_copy.ishow_top(ibs, fnum=pt.next_fnum()) #qres_orig.ishow_top(ibs, fnum=pt.next_fnum()) # Text Informatio param_lbl = 'dcvs_power' param_stats_str = gridsearch.get_dimension_stats_str(param_lbl) print(param_stats_str) csvtext = gridsearch.get_csv_results(10) print(csvtext) # Paramter visuzliation fnum = pt.next_fnum() # plot paramter influence param_label_list = gridsearch.get_param_lbls() pnum_ = pt.get_pnum_func(2, len(param_label_list)) for px, param_label in enumerate(param_label_list): gridsearch.plot_dimension(param_label, fnum=fnum, pnum=pnum_(px)) # plot match figure pnum2_ = pt.get_pnum_func(2, 2) qres_copy.show_matches(ibs, aid2, fnum=fnum, pnum=pnum2_(2)) qres_copy.show_matches(ibs, tn_aid, fnum=fnum, pnum=pnum2_(3)) # Add figure labels figtitle = 'Effect of parameters on vsone separation for a single case' subtitle = 'qvuuid = %r' % (qvuuid) figtitle += '\n' + subtitle pt.set_figtitle(figtitle) # Save Figure #fig_fpath = pt.save_figure(usetitle=True) #print(fig_fpath) # Write CSV Results #csv_fpath = fig_fpath + '.csv.txt' #ut.write_to(csv_fpath, csvtext) #qres_copy.ishow_top(ibs) #from matplotlib import pyplot as plt #plt.show() #print(ut.list_str())) # TODO: plot max variation dims #import plottool as pt #pt.plot(p_list, diff_list) """
def compare_featscores(): """ CommandLine: ibeis --tf compare_featscores --db PZ_MTEST \ --nfscfg :disttype=[L2_sift,lnbnn],top_percent=[None,.5,.1] -a timectrl \ -p default:K=[1,2],normalizer_rule=name \ --save featscore{db}.png --figsize=13,20 --diskshow ibeis --tf compare_featscores --db PZ_MTEST \ --nfscfg :disttype=[L2_sift,normdist,lnbnn],top_percent=[None,.5] -a timectrl \ -p default:K=[1],normalizer_rule=name,sv_on=[True,False] \ --save featscore{db}.png --figsize=13,10 --diskshow ibeis --tf compare_featscores --nfscfg :disttype=[L2_sift,normdist,lnbnn] \ -a timectrl -p default:K=1,normalizer_rule=name --db PZ_Master1 \ --save featscore{db}.png --figsize=13,13 --diskshow ibeis --tf compare_featscores --nfscfg :disttype=[L2_sift,normdist,lnbnn] \ -a timectrl -p default:K=1,normalizer_rule=name --db GZ_ALL \ --save featscore{db}.png --figsize=13,13 --diskshow ibeis --tf compare_featscores --db GIRM_Master1 \ --nfscfg ':disttype=fg,L2_sift,normdist,lnbnn' \ -a timectrl -p default:K=1,normalizer_rule=name \ --save featscore{db}.png --figsize=13,13 ibeis --tf compare_featscores --nfscfg :disttype=[L2_sift,normdist,lnbnn] \ -a timectrl -p default:K=[1,2,3],normalizer_rule=name,sv_on=False \ --db PZ_Master1 --save featscore{db}.png \ --dpi=128 --figsize=15,20 --diskshow ibeis --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db PZ_MTEST ibeis --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db GZ_ALL ibeis --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db PZ_Master1 ibeis --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db GIRM_Master1 ibeis --tf compare_featscores --db PZ_MTEST \ --nfscfg :disttype=[L2_sift,normdist,lnbnn],top_percent=[None,.5,.2] -a timectrl \ -p default:K=[1],normalizer_rule=name \ --save featscore{db}.png --figsize=13,20 --diskshow ibeis --tf compare_featscores --db PZ_MTEST \ --nfscfg :disttype=[L2_sift,normdist,lnbnn],top_percent=[None,.5,.2] -a timectrl \ -p default:K=[1],normalizer_rule=name \ --save featscore{db}.png --figsize=13,20 --diskshow Example: >>> # DISABLE_DOCTEST >>> from ibeis.algo.hots.scorenorm import * # NOQA >>> result = compare_featscores() >>> print(result) >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ import plottool as pt import ibeis nfs_cfg_list = NormFeatScoreConfig.from_argv_cfgs() learnkw = {} ibs, testres = ibeis.testdata_expts( defaultdb='PZ_MTEST', a=['default'], p=['default:K=1']) print('nfs_cfg_list = ' + ut.repr3(nfs_cfg_list)) encoder_list = [] lbl_list = [] varied_nfs_lbls = ut.get_varied_cfg_lbls(nfs_cfg_list) varied_qreq_lbls = ut.get_varied_cfg_lbls(testres.cfgdict_list) #varies_qreq_lbls #func = ut.cached_func(cache_dir='.')(learn_featscore_normalizer) for datakw, nlbl in zip(nfs_cfg_list, varied_nfs_lbls): for qreq_, qlbl in zip(testres.cfgx2_qreq_, varied_qreq_lbls): lbl = qlbl + ' ' + nlbl cfgstr = '_'.join([datakw.get_cfgstr(), qreq_.get_full_cfgstr()]) try: encoder = vt.ScoreNormalizer() encoder.load(cfgstr=cfgstr) except IOError: print('datakw = %r' % (datakw,)) encoder = learn_featscore_normalizer(qreq_, datakw, learnkw) encoder.save(cfgstr=cfgstr) encoder_list.append(encoder) lbl_list.append(lbl) fnum = 1 # next_pnum = pt.make_pnum_nextgen(nRows=len(encoder_list), nCols=3) next_pnum = pt.make_pnum_nextgen(nRows=len(encoder_list) + 1, nCols=3, start=3) iconsize = 94 if len(encoder_list) > 3: iconsize = 64 icon = qreq_.ibs.get_database_icon(max_dsize=(None, iconsize), aid=qreq_.qaids[0]) score_range = (0, .6) for encoder, lbl in zip(encoder_list, lbl_list): #encoder.visualize(figtitle=encoder.get_cfgstr(), with_prebayes=False, with_postbayes=False) encoder._plot_score_support_hist(fnum, pnum=next_pnum(), titlesuf='\n' + lbl, score_range=score_range) encoder._plot_prebayes(fnum, pnum=next_pnum()) encoder._plot_roc(fnum, pnum=next_pnum()) if icon is not None: pt.overlay_icon(icon, coords=(1, 0), bbox_alignment=(1, 0)) nonvaried_lbl = ut.get_nonvaried_cfg_lbls(nfs_cfg_list)[0] figtitle = qreq_.__str__() + '\n' + nonvaried_lbl pt.set_figtitle(figtitle) pt.adjust_subplots(hspace=.5, top=.92, bottom=.08, left=.1, right=.9) pt.update_figsize() pt.plt.tight_layout()
def test_rot_invar(): r""" CommandLine: python -m pyhesaff test_rot_invar --show --rebuild-hesaff --no-rmbuild python -m pyhesaff test_rot_invar --show --nocpp python -m vtool.tests.dummy testdata_ratio_matches --show --ratio_thresh=1.0 --rotation_invariance --rebuild-hesaff python -m vtool.tests.dummy testdata_ratio_matches --show --ratio_thresh=1.1 --rotation_invariance --rebuild-hesaff Example: >>> # DISABLE_DODCTEST >>> from pyhesaff._pyhesaff import * # NOQA >>> test_rot_invar() """ import cv2 import vtool as vt import plottool as pt TAU = 2 * np.pi fnum = pt.next_fnum() NUM_PTS = 5 # 9 theta_list = np.linspace(0, TAU, NUM_PTS, endpoint=False) nRows, nCols = pt.get_square_row_cols(len(theta_list), fix=True) next_pnum = pt.make_pnum_nextgen(nRows, nCols) # Expand the border a bit around star.png pad_ = 100 img_fpath = grab_test_imgpath('star.png') img_fpath2 = vt.pad_image_ondisk(img_fpath, pad_, value=26) for theta in theta_list: print('-----------------') print('theta = %r' % (theta, )) img_fpath = vt.rotate_image_ondisk(img_fpath2, theta, border_mode=cv2.BORDER_REPLICATE) if not ub.argflag('--nocpp'): (kpts_list_ri, vecs_list2) = detect_feats(img_fpath, rotation_invariance=True) kpts_ri = kpts_list_ri[0:2] (kpts_list_gv, vecs_list1) = detect_feats(img_fpath, rotation_invariance=False) kpts_gv = kpts_list_gv[0:2] # find_kpts_direction imgBGR = vt.imread(img_fpath) kpts_ripy = vt.find_kpts_direction(imgBGR, kpts_gv, DEBUG_ROTINVAR=False) # Verify results stdout #print('nkpts = %r' % (len(kpts_gv))) #print(vt.kpts_repr(kpts_gv)) #print(vt.kpts_repr(kpts_ri)) #print(vt.kpts_repr(kpts_ripy)) # Verify results plot pt.figure(fnum=fnum, pnum=next_pnum()) pt.imshow(imgBGR) #if len(kpts_gv) > 0: # pt.draw_kpts2(kpts_gv, ori=True, ell_color=pt.BLUE, ell_linewidth=10.5) ell = False rect = True if not ub.argflag('--nocpp'): if len(kpts_ri) > 0: pt.draw_kpts2(kpts_ri, rect=rect, ell=ell, ori=True, ell_color=pt.RED, ell_linewidth=5.5) if len(kpts_ripy) > 0: pt.draw_kpts2(kpts_ripy, rect=rect, ell=ell, ori=True, ell_color=pt.GREEN, ell_linewidth=3.5) pt.set_figtitle('green=python, red=C++') pt.show_if_requested()
def show_model(model, evidence={}, soft_evidence={}, **kwargs): """ References: http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer Ignore: pkg-config --libs-only-L libcgraph sudo apt-get install libgraphviz-dev -y sudo apt-get install libgraphviz4 -y # sudo apt-get install pkg-config sudo apt-get install libgraphviz-dev # pip install git+git://github.com/pygraphviz/pygraphviz.git pip install pygraphviz python -c "import pygraphviz; print(pygraphviz.__file__)" sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/" python3 -c "import pygraphviz; print(pygraphviz.__file__)" CommandLine: python -m ibeis.algo.hots.bayes --exec-show_model --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.algo.hots.bayes import * # NOQA >>> model = '?' >>> evidence = {} >>> soft_evidence = {} >>> result = show_model(model, evidence, soft_evidence) >>> print(result) >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'): draw_tree_model(model, **kwargs) return import plottool as pt import networkx as netx fnum = pt.ensure_fnum(None) netx_graph = (model) #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"' #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR' pos_dict = get_hacked_pos(netx_graph) #pos_dict = netx.pygraphviz_layout(netx_graph) #pos = netx.pydot_layout(netx_graph, prog='dot') #pos_dict = netx.graphviz_layout(netx_graph) textprops = { 'family': 'monospace', 'horizontalalignment': 'left', #'horizontalalignment': 'center', #'size': 12, 'size': 8, } netx_nodes = model.nodes(data=True) node_key_list = ut.get_list_column(netx_nodes, 0) pos_list = ut.dict_take(pos_dict, node_key_list) var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])} prior_text = None post_text = None evidence_tas = [] post_tas = [] prior_tas = [] node_color = [] has_infered = evidence or var2_post if has_infered: ignore_prior_with_ttype = ['score', 'match'] show_prior = False else: ignore_prior_with_ttype = [] #show_prior = True show_prior = False dpy = 5 dbx, dby = (20, 20) takw1 = {'bbox_align': (.5, 0), 'pos_offset': [0, dpy], 'bbox_offset': [dbx, dby]} takw2 = {'bbox_align': (.5, 1), 'pos_offset': [0, -dpy], 'bbox_offset': [-dbx, -dby]} name_colors = pt.distinct_colors(max(model.num_names, 10)) name_colors = name_colors[:model.num_names] #cmap_ = 'hot' #mx = 0.65 #mn = 0.15 cmap_, mn, mx = 'plasma', 0.15, 1.0 _cmap = pt.plt.get_cmap(cmap_) def cmap(x): return _cmap((x * mx) + mn) for node, pos in zip(netx_nodes, pos_list): variable = node[0] cpd = model.var2_cpd[variable] prior_marg = (cpd if cpd.evidence is None else cpd.marginalize(cpd.evidence, inplace=False)) show_evidence = variable in evidence show_prior = cpd.ttype not in ignore_prior_with_ttype show_post = variable in var2_post show_prior |= cpd.ttype not in ignore_prior_with_ttype post_marg = None if show_post: post_marg = var2_post[variable] def get_name_color(phi): order = phi.values.argsort()[::-1] if len(order) < 2: dist_next = phi.values[order[0]] else: dist_next = phi.values[order[0]] - phi.values[order[1]] dist_total = (phi.values[order[0]]) confidence = (dist_total * dist_next) ** (2.5 / 4) #print('confidence = %r' % (confidence,)) color = name_colors[order[0]] color = pt.color_funcs.desaturate_rgb(color, 1 - confidence) color = np.array(color) return color if variable in evidence: if cpd.ttype == 'score': cmap_index = evidence[variable] / (cpd.variable_card - 1) color = cmap(cmap_index) color = pt.lighten_rgb(color, .4) color = np.array(color) node_color.append(color) elif cpd.ttype == 'name': color = name_colors[evidence[variable]] color = np.array(color) node_color.append(color) else: color = pt.FALSE_RED node_color.append(color) #elif variable in soft_evidence: # color = pt.LIGHT_PINK # show_prior = True # color = get_name_color(prior_marg) # node_color.append(color) else: if cpd.ttype == 'name' and post_marg is not None: color = get_name_color(post_marg) node_color.append(color) elif cpd.ttype == 'match' and post_marg is not None: color = cmap(post_marg.values[1]) color = pt.lighten_rgb(color, .4) color = np.array(color) node_color.append(color) else: #color = pt.WHITE color = pt.NEUTRAL node_color.append(color) if show_prior: if variable in soft_evidence: prior_color = pt.LIGHT_PINK else: prior_color = None prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') prior_tas.append(dict(text=prior_text, pos=pos, color=prior_color, **takw2)) if show_evidence: _takw1 = takw1 if cpd.ttype == 'score': _takw1 = takw2 evidence_text = cpd.variable_statenames[evidence[variable]] if isinstance(evidence_text, int): evidence_text = '%d/%d' % (evidence_text + 1, cpd.variable_card) evidence_tas.append(dict(text=evidence_text, pos=pos, color=color, **_takw1)) if show_post: _takw1 = takw1 if cpd.ttype == 'match': _takw1 = takw2 post_text = pgm_ext.make_factor_text(post_marg, 'post') post_tas.append(dict(text=post_text, pos=pos, color=None, **_takw1)) def trnps_(dict_list): """ tranpose dict list """ list_dict = ut.ddict(list) for dict_ in dict_list: for key, val in dict_.items(): list_dict[key + '_list'].append(val) return list_dict takw1_ = trnps_(post_tas + evidence_tas) takw2_ = trnps_(prior_tas) # Draw graph if has_infered: pnum1 = (3, 1, (slice(0, 2), 0)) else: pnum1 = None fig = pt.figure(fnum=fnum, pnum=pnum1, doclf=True) # NOQA ax = pt.gca() #print('node_color = %s' % (ut.repr3(node_color),)) drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1500, node_color=node_color) netx.draw(netx_graph, **drawkw) hacks = [] if len(post_tas + evidence_tas): hacks.append(pt.draw_text_annotations(textprops=textprops, **takw1_)) if prior_tas: hacks.append(pt.draw_text_annotations(textprops=textprops, **takw2_)) xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) fig = pt.gcf() title = 'num_names=%r, num_annots=%r' % (model.num_names, num_annots,) map_assign = kwargs.get('map_assign', None) top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: def word_insert(text): return '' if len(text) == 0 else text + ' ' title += '\n%sMAP: ' % (word_insert(kwargs.get('method', ''))) title += map_assign + ' @' + '%.2f%%' % (100 * map_prob,) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) for hack in hacks: hack() # Hack in colorbars if has_infered: pt.colorbar(np.linspace(0, 1, len(name_colors)), name_colors, lbl='name', ticklabels=model.ttype2_template['name'].basis, ticklocation='left') basis = model.ttype2_template['score'].basis scalars = np.linspace(0, 1, len(basis)) scalars = np.linspace(0, 1, 100) colors = pt.scores_to_color(scalars, cmap_=cmap_, reverse_cmap=False, cmap_range=(mn, mx)) colors = [pt.lighten_rgb(c, .4) for c in colors] if ut.list_type(basis) is int: pt.colorbar(scalars, colors, lbl='score', ticklabels=np.array(basis) + 1) else: pt.colorbar(scalars, colors, lbl='score', ticklabels=basis) #print('basis = %r' % (basis,)) # Draw probability hist if has_infered and top_assignments is not None: bin_labels = ut.get_list_column(top_assignments, 0) bin_vals = ut.get_list_column(top_assignments, 1) # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels] pt.draw_histogram(bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))), transpose=True, use_darkbackground=False, #xtick_rotation=-10, ylabel='Prob', xlabel='assignment') pt.set_title('Assignment probabilities')
def show_qres(ibs, cm, qreq_=None, **kwargs): """ Display Query Result Logic Defaults to: query chip, groundtruth matches, and top matches Args: ibs (ibeis.IBEISController): ibeis controller object cm (ibeis.ChipMatch): object of feature correspondences and scores Kwargs: in_image (bool) show result in image view if True else chip view annot_mode (int): if annot_mode == 0, then draw lines and ellipse elif annot_mode == 1, then dont draw lines or ellipse elif annot_mode == 2, then draw only lines See: viz_matches.show_name_matches, viz_helpers.get_query_text Returns: mpl.Figure: fig CommandLine: ./main.py --query 1 -y --db PZ_MTEST --noshow-qtres python -m ibeis.viz.viz_qres --test-show_qres --show python -m ibeis.viz.viz_qres --test-show_qres --show --top-aids=10 --db=PZ_MTEST --sidebyside --annot_mode=0 --notitle --no-viz_name_score --qaids=5 --max_nCols=2 --adjust=.01,.01,.01 python -m ibeis.viz.viz_qres --test-show_qres --show --top-aids=10 --db=PZ_MTEST --sidebyside --annot_mode=0 --notitle --no-viz_name_score --qaids=5 --max_nCols=2 --adjust=.01,.01,.01 Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.viz_qres import * # NOQA >>> import plottool as pt >>> ibs, cm, qreq_, kwargs = testdata_show_qres() >>> # execute function >>> fig = show_qres(ibs, cm, show_query=False, qreq_=qreq_, **kwargs) >>> # verify results >>> #fig.show() >>> pt.show_if_requested() """ #ut.print_dict(kwargs) annot_mode = kwargs.get('annot_mode', 1) % 3 # this is toggled figtitle = kwargs.get('figtitle', '') make_figtitle = kwargs.get('make_figtitle', False) aug = kwargs.get('aug', '') top_aids = kwargs.get('top_aids', DEFAULT_NTOP) gt_aids = kwargs.get('gt_aids', []) all_kpts = kwargs.get('all_kpts', False) show_query = kwargs.get('show_query', False) in_image = kwargs.get('in_image', False) sidebyside = kwargs.get('sidebyside', True) #name_scoring = kwargs.get('name_scoring', False) viz_name_score = kwargs.get('viz_name_score', qreq_ is not None) max_nCols = kwargs.get('max_nCols', None) failed_to_match = kwargs.get('failed_to_match', False) fnum = pt.ensure_fnum(kwargs.get('fnum', None)) if ut.VERBOSE and ut.NOT_QUIET: print('query_info = ' + ut.obj_str( ibs.get_annot_info(cm.qaid, default=True, gname=False, name=False, notes=False, exemplar=False), nl=4)) print('top_aids_info = ' + ut.obj_str( ibs.get_annot_info(top_aids, default=True, gname=False, name=False, notes=False, exemplar=False, reference_aid=cm.qaid), nl=4)) if make_figtitle is True: pass #figtitle = cm.make_title(pack=True) #figtitle fig = pt.figure(fnum=fnum, docla=True, doclf=True) if isinstance(top_aids, int): #if isinstance(cm, chip_match.ChipMatch): top_aids = cm.get_top_aids(top_aids) #else: # top_aids = cm.get_top_aids(num=top_aids, name_scoring=name_scoring, ibs=ibs) if failed_to_match: # HACK to visually indicate failure to match in analysis top_aids = [None] + top_aids nTop = len(top_aids) if max_nCols is None: max_nCols = 5 if nTop in [6, 7]: max_nCols = 3 if nTop in [8]: max_nCols = 4 try: assert len(list(set(top_aids).intersection(set(gt_aids)))) == 0, ( 'gts should be missed. not in top') except AssertionError as ex: ut.printex(ex, keys=['top_aids', 'gt_aids']) raise if ut.DEBUG2: print(cm.get_inspect_str()) #-------------------------------------------------- # Get grid / cell information to build subplot grid #-------------------------------------------------- # Show query or not nQuerySubplts = 1 if show_query else 0 # The top row is given slots for ground truths and querys # all aids in gt_aids should not be in top aids nGtSubplts = nQuerySubplts + (0 if gt_aids is None else len(gt_aids)) # The bottom rows are for the top results nTopNSubplts = nTop nTopNCols = min(max_nCols, nTopNSubplts) nGTCols = min(max_nCols, nGtSubplts) nGTCols = max(nGTCols, nTopNCols) nTopNCols = nGTCols # Get number of rows to show groundtruth nGtRows = 0 if nGTCols == 0 else int(np.ceil(nGtSubplts / nGTCols)) # Get number of rows to show results nTopNRows = 0 if nTopNCols == 0 else int(np.ceil(nTopNSubplts / nTopNCols)) nGtCells = nGtRows * nGTCols # Total number of rows nRows = nTopNRows + nGtRows DEBUG_SHOW_QRES = 0 if DEBUG_SHOW_QRES: allgt_aids = ibs.get_annot_groundtruth(cm.qaid) nSelGt = len(gt_aids) nAllGt = len(allgt_aids) print('[show_qres]========================') print('[show_qres]----------------') print('[show_qres] * annot_mode=%r' % (annot_mode,)) print('[show_qres] #nTop=%r #missed_gts=%r/%r' % (nTop, nSelGt, nAllGt)) print('[show_qres] * -----') print('[show_qres] * nRows=%r' % (nRows,)) print('[show_qres] * nGtSubplts=%r' % (nGtSubplts,)) print('[show_qres] * nTopNSubplts=%r' % (nTopNSubplts,)) print('[show_qres] * nQuerySubplts=%r' % (nQuerySubplts,)) print('[show_qres] * -----') print('[show_qres] * nGTCols=%r' % (nGTCols,)) print('[show_qres] * -----') print('[show_qres] * fnum=%r' % (fnum,)) print('[show_qres] * figtitle=%r' % (figtitle,)) print('[show_qres] * max_nCols=%r' % (max_nCols,)) print('[show_qres] * show_query=%r' % (show_query,)) print('[show_qres] * kwargs=%s' % (ut.dict_str(kwargs),)) # HACK: _color_list = pt.distinct_colors(nTop) aid2_color = {aid: _color_list[ox] for ox, aid in enumerate(top_aids)} ranked_aids = cm.get_top_aids() # Helpers def _show_query_fn(plotx_shift, rowcols): """ helper for show_qres """ plotx = plotx_shift + 1 pnum = (rowcols[0], rowcols[1], plotx) #print('[viz] Plotting Query: pnum=%r' % (pnum,)) _kwshow = dict(draw_kpts=annot_mode) _kwshow.update(kwargs) _kwshow['prefix'] = 'q' _kwshow['pnum'] = pnum _kwshow['aid2_color'] = aid2_color _kwshow['draw_ell'] = annot_mode >= 1 viz_chip.show_chip(ibs, cm.qaid, annote=False, qreq_=qreq_, **_kwshow) def _plot_matches_aids(aid_list, plotx_shift, rowcols): """ helper for show_qres to draw many aids """ _kwshow = dict(draw_ell=annot_mode, draw_pts=False, draw_lines=annot_mode, ell_alpha=.5, all_kpts=all_kpts) _kwshow.update(kwargs) _kwshow['fnum'] = fnum _kwshow['in_image'] = in_image if sidebyside: # Draw each match side by side the query _kwshow['draw_ell'] = annot_mode == 1 _kwshow['draw_lines'] = annot_mode >= 1 else: #print('annot_mode = %r' % (annot_mode,)) _kwshow['draw_ell'] = annot_mode == 1 #_kwshow['draw_pts'] = annot_mode >= 1 #_kwshow['draw_lines'] = False _kwshow['show_query'] = False def _show_matches_fn(aid, orank, pnum): """ Helper function for drawing matches to one aid """ aug = 'rank=%r\n' % orank _kwshow['pnum'] = pnum _kwshow['title_aug'] = aug #draw_ell = annot_mode == 1 #draw_lines = annot_mode >= 1 # If we already are showing the query dont show it here if sidebyside: # Draw each match side by side the query if viz_name_score: cm.show_single_namematch(qreq_, ibs.get_annot_nids(aid), **_kwshow) else: _kwshow['draw_border'] = False _kwshow['draw_lbl'] = False _kwshow['notitle'] = True _kwshow['vert'] = False cm.show_single_annotmatch(qreq_, aid, **_kwshow) #viz_matches.show_matches(ibs, cm, aid, qreq_=qreq_, **_kwshow) else: # Draw each match by themselves data_config2_ = None if qreq_ is None else qreq_.get_external_data_config2() #_kwshow['draw_border'] = kwargs.get('draw_border', True) #_kwshow['notitle'] = ut.get_argflag(('--no-title', '--notitle')) viz_chip.show_chip(ibs, aid, annote=False, notitle=True, data_config2_=data_config2_, **_kwshow) if DEBUG_SHOW_QRES: print('[show_qres()] Plotting Chips %s:' % vh.get_aidstrs(aid_list)) if aid_list is None: return # Do lazy load before show #data_config2_ = None if qreq_ is None else qreq_.get_external_data_config2() tblhack = getattr(qreq_, 'tablename', None) # HACK FOR HUMPBACKS # (Also in viz_matches) if tblhack == 'vsone' or (qreq_ is not None and not qreq_._isnewreq): # precompute pass #ibs.get_annot_chips(aid_list, config2_=data_config2_, ensure=True) #ibs.get_annot_kpts(aid_list, config2_=data_config2_, ensure=True) for ox, aid in enumerate(aid_list): plotx = ox + plotx_shift + 1 pnum = (rowcols[0], rowcols[1], plotx) oranks = np.where(ranked_aids == aid)[0] # This pair has no matches between them. if len(oranks) == 0: orank = -1 if aid is None: pt.imshow_null('Failed to find matches\nfor qaid=%r' % (cm.qaid), fnum=fnum, pnum=pnum, fontsize=18) else: _show_matches_fn(aid, orank, pnum) #if DEBUG_SHOW_QRES: # print('skipping pnum=%r' % (pnum,)) continue if DEBUG_SHOW_QRES: print('pnum=%r' % (pnum,)) orank = oranks[0] + 1 _show_matches_fn(aid, orank, pnum) shift_topN = nGtCells if nGtSubplts == 1: nGTCols = 1 if nRows == 0: pt.imshow_null('[viz_qres] No matches. nRows=0', fnum=fnum) else: fig = pt.figure(fnum=fnum, pnum=(nRows, nGTCols, 1), docla=True, doclf=True) pt.plt.subplot(nRows, nGTCols, 1) # Plot Query if show_query: _show_query_fn(0, (nRows, nGTCols)) # Plot Ground Truth (if given) _plot_matches_aids(gt_aids, nQuerySubplts, (nRows, nGTCols)) # Plot Results _plot_matches_aids(top_aids, shift_topN, (nRows, nTopNCols)) figtitle += aug if failed_to_match: figtitle += '\n No matches found' incanvas = kwargs.get('with_figtitle', not vh.NO_LBL_OVERRIDE) pt.set_figtitle(figtitle, incanvas=incanvas) # Result Interaction return fig
def draw_markov_model(model, fnum=None, **kwargs): import plottool as pt fnum = pt.ensure_fnum(fnum) pt.figure(fnum=fnum, doclf=True) ax = pt.gca() from pgmpy.models import MarkovModel if isinstance(model, MarkovModel): markovmodel = model else: markovmodel = model.to_markov_model() # pos = nx.nx_agraph.pydot_layout(markovmodel) pos = nx.nx_agraph.pygraphviz_layout(markovmodel) # Referenecs: # https://groups.google.com/forum/#!topic/networkx-discuss/FwYk0ixLDuY # pos = nx.spring_layout(markovmodel) # pos = nx.circular_layout(markovmodel) # curved-arrow # markovmodel.edge_attr['curved-arrow'] = True # markovmodel.graph.setdefault('edge', {})['splines'] = 'curved' # markovmodel.graph.setdefault('graph', {})['splines'] = 'curved' # markovmodel.graph.setdefault('edge', {})['splines'] = 'curved' node_color = [pt.NEUTRAL] * len(pos) drawkw = dict( pos=pos, ax=ax, with_labels=True, node_color=node_color, # NOQA node_size=1100) from matplotlib.patches import FancyArrowPatch, Circle import numpy as np def draw_network(G, pos, ax, sg=None): for n in G: c = Circle(pos[n], radius=10, alpha=0.5, color=pt.NEUTRAL_BLUE) ax.add_patch(c) G.node[n]['patch'] = c x, y = pos[n] pt.ax_absolute_text(x, y, n, ha='center', va='center') seen = {} for (u, v, d) in G.edges(data=True): n1 = G.node[u]['patch'] n2 = G.node[v]['patch'] rad = 0.1 if (u, v) in seen: rad = seen.get((u, v)) rad = (rad + np.sign(rad) * 0.1) * -1 alpha = 0.5 color = 'k' e = FancyArrowPatch( n1.center, n2.center, patchA=n1, patchB=n2, # arrowstyle='-|>', arrowstyle='-', connectionstyle='arc3,rad=%s' % rad, mutation_scale=10.0, lw=2, alpha=alpha, color=color) seen[(u, v)] = rad ax.add_patch(e) return e # nx.draw(markovmodel, **drawkw) draw_network(markovmodel, pos, ax) ax.autoscale() pt.plt.axis('equal') pt.plt.axis('off') if kwargs.get('show_title', True): pt.set_figtitle('Markov Model')
def show_qres(ibs, cm, qreq_=None, **kwargs): """ Display Query Result Logic Defaults to: query chip, groundtruth matches, and top matches Args: ibs (ibeis.IBEISController): ibeis controller object cm (ibeis.ChipMatch): object of feature correspondences and scores Kwargs: in_image (bool) show result in image view if True else chip view annot_mode (int): if annot_mode == 0, then draw lines and ellipse elif annot_mode == 1, then dont draw lines or ellipse elif annot_mode == 2, then draw only lines See: viz_matches.show_name_matches, viz_helpers.get_query_text Returns: mpl.Figure: fig CommandLine: ./main.py --query 1 -y --db PZ_MTEST --noshow-qtres python -m ibeis.viz.viz_qres --test-show_qres --show python -m ibeis.viz.viz_qres --test-show_qres --show --top-aids=10 --db=PZ_MTEST --sidebyside --annot_mode=0 --notitle --no-viz_name_score --qaids=5 --max_nCols=2 --adjust=.01,.01,.01 python -m ibeis.viz.viz_qres --test-show_qres --show --top-aids=10 --db=PZ_MTEST --sidebyside --annot_mode=0 --notitle --no-viz_name_score --qaids=5 --max_nCols=2 --adjust=.01,.01,.01 Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.viz_qres import * # NOQA >>> import plottool as pt >>> ibs, cm, qreq_, kwargs = testdata_show_qres() >>> # execute function >>> fig = show_qres(ibs, cm, show_query=False, qreq_=qreq_, **kwargs) >>> # verify results >>> #fig.show() >>> pt.show_if_requested() """ #ut.print_dict(kwargs) annot_mode = kwargs.get('annot_mode', 1) % 3 # this is toggled figtitle = kwargs.get('figtitle', '') make_figtitle = kwargs.get('make_figtitle', False) aug = kwargs.get('aug', '') top_aids = kwargs.get('top_aids', DEFAULT_NTOP) gt_aids = kwargs.get('gt_aids', []) all_kpts = kwargs.get('all_kpts', False) show_query = kwargs.get('show_query', False) in_image = kwargs.get('in_image', False) sidebyside = kwargs.get('sidebyside', True) #name_scoring = kwargs.get('name_scoring', False) viz_name_score = kwargs.get('viz_name_score', qreq_ is not None) max_nCols = kwargs.get('max_nCols', None) failed_to_match = kwargs.get('failed_to_match', False) fnum = pt.ensure_fnum(kwargs.get('fnum', None)) if ut.VERBOSE and ut.NOT_QUIET: print('query_info = ' + ut.obj_str(ibs.get_annot_info(cm.qaid, default=True, gname=False, name=False, notes=False, exemplar=False), nl=4)) print('top_aids_info = ' + ut.obj_str(ibs.get_annot_info(top_aids, default=True, gname=False, name=False, notes=False, exemplar=False, reference_aid=cm.qaid), nl=4)) if make_figtitle is True: pass #figtitle = cm.make_title(pack=True) #figtitle fig = pt.figure(fnum=fnum, docla=True, doclf=True) if isinstance(top_aids, int): #if isinstance(cm, chip_match.ChipMatch): top_aids = cm.get_top_aids(top_aids) #else: # top_aids = cm.get_top_aids(num=top_aids, name_scoring=name_scoring, ibs=ibs) if failed_to_match: # HACK to visually indicate failure to match in analysis top_aids = [None] + top_aids nTop = len(top_aids) if max_nCols is None: max_nCols = 5 if nTop in [6, 7]: max_nCols = 3 if nTop in [8]: max_nCols = 4 try: assert len(list(set(top_aids).intersection( set(gt_aids)))) == 0, ('gts should be missed. not in top') except AssertionError as ex: ut.printex(ex, keys=['top_aids', 'gt_aids']) raise if ut.DEBUG2: print(cm.get_inspect_str()) #-------------------------------------------------- # Get grid / cell information to build subplot grid #-------------------------------------------------- # Show query or not nQuerySubplts = 1 if show_query else 0 # The top row is given slots for ground truths and querys # all aids in gt_aids should not be in top aids nGtSubplts = nQuerySubplts + (0 if gt_aids is None else len(gt_aids)) # The bottom rows are for the top results nTopNSubplts = nTop nTopNCols = min(max_nCols, nTopNSubplts) nGTCols = min(max_nCols, nGtSubplts) nGTCols = max(nGTCols, nTopNCols) nTopNCols = nGTCols # Get number of rows to show groundtruth nGtRows = 0 if nGTCols == 0 else int(np.ceil(nGtSubplts / nGTCols)) # Get number of rows to show results nTopNRows = 0 if nTopNCols == 0 else int(np.ceil(nTopNSubplts / nTopNCols)) nGtCells = nGtRows * nGTCols # Total number of rows nRows = nTopNRows + nGtRows DEBUG_SHOW_QRES = 0 if DEBUG_SHOW_QRES: allgt_aids = ibs.get_annot_groundtruth(cm.qaid) nSelGt = len(gt_aids) nAllGt = len(allgt_aids) print('[show_qres]========================') print('[show_qres]----------------') print('[show_qres] * annot_mode=%r' % (annot_mode, )) print('[show_qres] #nTop=%r #missed_gts=%r/%r' % (nTop, nSelGt, nAllGt)) print('[show_qres] * -----') print('[show_qres] * nRows=%r' % (nRows, )) print('[show_qres] * nGtSubplts=%r' % (nGtSubplts, )) print('[show_qres] * nTopNSubplts=%r' % (nTopNSubplts, )) print('[show_qres] * nQuerySubplts=%r' % (nQuerySubplts, )) print('[show_qres] * -----') print('[show_qres] * nGTCols=%r' % (nGTCols, )) print('[show_qres] * -----') print('[show_qres] * fnum=%r' % (fnum, )) print('[show_qres] * figtitle=%r' % (figtitle, )) print('[show_qres] * max_nCols=%r' % (max_nCols, )) print('[show_qres] * show_query=%r' % (show_query, )) print('[show_qres] * kwargs=%s' % (ut.dict_str(kwargs), )) # HACK: _color_list = pt.distinct_colors(nTop) aid2_color = {aid: _color_list[ox] for ox, aid in enumerate(top_aids)} ranked_aids = cm.get_top_aids() # Helpers def _show_query_fn(plotx_shift, rowcols): """ helper for show_qres """ plotx = plotx_shift + 1 pnum = (rowcols[0], rowcols[1], plotx) #print('[viz] Plotting Query: pnum=%r' % (pnum,)) _kwshow = dict(draw_kpts=annot_mode) _kwshow.update(kwargs) _kwshow['prefix'] = 'q' _kwshow['pnum'] = pnum _kwshow['aid2_color'] = aid2_color _kwshow['draw_ell'] = annot_mode >= 1 viz_chip.show_chip(ibs, cm.qaid, annote=False, qreq_=qreq_, **_kwshow) def _plot_matches_aids(aid_list, plotx_shift, rowcols): """ helper for show_qres to draw many aids """ _kwshow = dict(draw_ell=annot_mode, draw_pts=False, draw_lines=annot_mode, ell_alpha=.5, all_kpts=all_kpts) _kwshow.update(kwargs) _kwshow['fnum'] = fnum _kwshow['in_image'] = in_image if sidebyside: # Draw each match side by side the query _kwshow['draw_ell'] = annot_mode == 1 _kwshow['draw_lines'] = annot_mode >= 1 else: #print('annot_mode = %r' % (annot_mode,)) _kwshow['draw_ell'] = annot_mode == 1 #_kwshow['draw_pts'] = annot_mode >= 1 #_kwshow['draw_lines'] = False _kwshow['show_query'] = False def _show_matches_fn(aid, orank, pnum): """ Helper function for drawing matches to one aid """ aug = 'rank=%r\n' % orank _kwshow['pnum'] = pnum _kwshow['title_aug'] = aug #draw_ell = annot_mode == 1 #draw_lines = annot_mode >= 1 # If we already are showing the query dont show it here if sidebyside: # Draw each match side by side the query if viz_name_score: cm.show_single_namematch(qreq_, ibs.get_annot_nids(aid), **_kwshow) else: _kwshow['draw_border'] = False _kwshow['draw_lbl'] = False _kwshow['notitle'] = True _kwshow['vert'] = False cm.show_single_annotmatch(qreq_, aid, **_kwshow) #viz_matches.show_matches(ibs, cm, aid, qreq_=qreq_, **_kwshow) else: # Draw each match by themselves data_config2_ = None if qreq_ is None else qreq_.get_external_data_config2( ) #_kwshow['draw_border'] = kwargs.get('draw_border', True) #_kwshow['notitle'] = ut.get_argflag(('--no-title', '--notitle')) viz_chip.show_chip(ibs, aid, annote=False, notitle=True, data_config2_=data_config2_, **_kwshow) if DEBUG_SHOW_QRES: print('[show_qres()] Plotting Chips %s:' % vh.get_aidstrs(aid_list)) if aid_list is None: return # Do lazy load before show #data_config2_ = None if qreq_ is None else qreq_.get_external_data_config2() tblhack = getattr(qreq_, 'tablename', None) # HACK FOR HUMPBACKS # (Also in viz_matches) if tblhack == 'vsone' or (qreq_ is not None and not qreq_._isnewreq): # precompute pass #ibs.get_annot_chips(aid_list, config2_=data_config2_, ensure=True) #ibs.get_annot_kpts(aid_list, config2_=data_config2_, ensure=True) for ox, aid in enumerate(aid_list): plotx = ox + plotx_shift + 1 pnum = (rowcols[0], rowcols[1], plotx) oranks = np.where(ranked_aids == aid)[0] # This pair has no matches between them. if len(oranks) == 0: orank = -1 if aid is None: pt.imshow_null('Failed to find matches\nfor qaid=%r' % (cm.qaid), fnum=fnum, pnum=pnum, fontsize=18) else: _show_matches_fn(aid, orank, pnum) #if DEBUG_SHOW_QRES: # print('skipping pnum=%r' % (pnum,)) continue if DEBUG_SHOW_QRES: print('pnum=%r' % (pnum, )) orank = oranks[0] + 1 _show_matches_fn(aid, orank, pnum) shift_topN = nGtCells if nGtSubplts == 1: nGTCols = 1 if nRows == 0: pt.imshow_null('[viz_qres] No matches. nRows=0', fnum=fnum) else: fig = pt.figure(fnum=fnum, pnum=(nRows, nGTCols, 1), docla=True, doclf=True) pt.plt.subplot(nRows, nGTCols, 1) # Plot Query if show_query: _show_query_fn(0, (nRows, nGTCols)) # Plot Ground Truth (if given) _plot_matches_aids(gt_aids, nQuerySubplts, (nRows, nGTCols)) # Plot Results _plot_matches_aids(top_aids, shift_topN, (nRows, nTopNCols)) figtitle += aug if failed_to_match: figtitle += '\n No matches found' incanvas = kwargs.get('with_figtitle', not vh.NO_LBL_OVERRIDE) pt.set_figtitle(figtitle, incanvas=incanvas) # Result Interaction return fig
def show_model(model, evidence={}, soft_evidence={}, **kwargs): """ References: http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer Ignore: pkg-config --libs-only-L libcgraph sudo apt-get install libgraphviz-dev -y sudo apt-get install libgraphviz4 -y # sudo apt-get install pkg-config sudo apt-get install libgraphviz-dev # pip install git+git://github.com/pygraphviz/pygraphviz.git pip install pygraphviz python -c "import pygraphviz; print(pygraphviz.__file__)" sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/" python3 -c "import pygraphviz; print(pygraphviz.__file__)" """ if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'): draw_tree_model(model, **kwargs) return import plottool as pt import networkx as netx import matplotlib as mpl fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, pnum=(3, 1, (slice(0, 2), 0)), doclf=True) # NOQA #fig = pt.figure(fnum=fnum, pnum=(3, 2, (1, slice(1, 2))), doclf=True) # NOQA ax = pt.gca() var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])} netx_graph = (model) #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"' #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR' pos = get_hacked_pos(netx_graph) #netx.pygraphviz_layout(netx_graph) #pos = netx.pydot_layout(netx_graph, prog='dot') #pos = netx.graphviz_layout(netx_graph) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_size=1500) if evidence is not None: node_colors = [ # (pt.TRUE_BLUE (pt.WHITE if node not in soft_evidence else pt.LIGHT_PINK) if node not in evidence else pt.FALSE_RED for node in netx_graph.nodes()] for node in netx_graph.nodes(): cpd = model.var2_cpd[node] if cpd.ttype == 'score': pass drawkw['node_color'] = node_colors netx.draw(netx_graph, **drawkw) show_probs = True if show_probs: textprops = { 'family': 'monospace', 'horizontalalignment': 'left', #'horizontalalignment': 'center', #'size': 12, 'size': 8, } textkw = dict( xycoords='data', boxcoords='offset points', pad=0.25, frameon=True, arrowprops=dict(arrowstyle='->'), #bboxprops=dict(fc=node_attr['fillcolor']), ) netx_nodes = model.nodes(data=True) node_key_list = ut.get_list_column(netx_nodes, 0) pos_list = ut.dict_take(pos, node_key_list) artist_list = [] offset_box_list = [] for pos_, node in zip(pos_list, netx_nodes): x, y = pos_ variable = node[0] cpd = model.var2_cpd[variable] prior_marg = (cpd if cpd.evidence is None else cpd.marginalize(cpd.evidence, inplace=False)) prior_text = None text = None if variable in evidence: text = cpd.variable_statenames[evidence[variable]] elif variable in var2_post: post_marg = var2_post[variable] text = pgm_ext.make_factor_text(post_marg, 'post') prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') else: if len(evidence) == 0 and len(soft_evidence) == 0: prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') show_post = kwargs.get('show_post', False) show_prior = kwargs.get('show_prior', False) show_prior = True show_post = True show_ev = (evidence is not None and variable in evidence) if (show_post or show_ev) and text is not None: offset_box = mpl.offsetbox.TextArea(text, textprops) artist = mpl.offsetbox.AnnotationBbox( # offset_box, (x + 5, y), xybox=(20., 5.), offset_box, (x, y + 5), xybox=(4., 20.), #box_alignment=(0, 0), box_alignment=(.5, 0), **textkw) offset_box_list.append(offset_box) artist_list.append(artist) if show_prior and prior_text is not None: offset_box2 = mpl.offsetbox.TextArea(prior_text, textprops) artist2 = mpl.offsetbox.AnnotationBbox( # offset_box2, (x - 5, y), xybox=(-20., -15.), # offset_box2, (x, y - 5), xybox=(-15., -20.), offset_box2, (x, y - 5), xybox=(-4, -20.), #box_alignment=(1, 1), box_alignment=(.5, 1), **textkw) offset_box_list.append(offset_box2) artist_list.append(artist2) for artist in artist_list: ax.add_artist(artist) xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) fig = pt.gcf() title = 'num_names=%r, num_annots=%r' % (model.num_names, num_annots,) map_assign = kwargs.get('map_assign', None) #max_marginal_list = [] #for name, marginal in marginalized_joints.items(): # states = list(ut.iprod(*marginal.statenames)) # vals = marginal.values.ravel() # x = vals.argmax() # max_marginal_list += ['P(' + ', '.join(states[x]) + ') = ' + str(vals[x])] # title += str(marginal) top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: # title += '\nMAP=' + ut.repr2(map_assign, strvals=True) title += '\nMAP: ' + map_assign + ' @' + '%.2f%%' % (100 * map_prob,) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) #pt.set_xlabel() def hack_fix_centeralign(): if textprops['horizontalalignment'] == 'center': print('Fixing centeralign') fig = pt.gcf() fig.canvas.draw() # Superhack for centered text. Fix bug in # /usr/local/lib/python2.7/dist-packages/matplotlib/offsetbox.py # /usr/local/lib/python2.7/dist-packages/matplotlib/text.py for offset_box in offset_box_list: offset_box.set_offset z = offset_box._text.get_window_extent() (z.x1 - z.x0) / 2 offset_box._text T = offset_box._text.get_transform() A = mpl.transforms.Affine2D() A.clear() A.translate((z.x1 - z.x0) / 2, 0) offset_box._text.set_transform(T + A) hack_fix_centeralign() top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: bin_labels = ut.get_list_column(top_assignments, 0) bin_vals = ut.get_list_column(top_assignments, 1) # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels] pt.draw_histogram(bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))), transpose=True, use_darkbackground=False, #xtick_rotation=-10, ylabel='Prob', xlabel='assignment') pt.set_title('Assignment probabilities')
def myquery(): r""" BUG:: THERE IS A BUG SOMEWHERE: HOW IS THIS POSSIBLE? if everything is weightd ) how di the true positive even get a score while the true negative did not qres_copy.filtkey_list = ['ratio', 'fg', 'homogerr', 'distinctiveness'] CORRECT STATS { 'max' : [0.832, 0.968, 0.604, 0.000], 'min' : [0.376, 0.524, 0.000, 0.000], 'mean' : [0.561, 0.924, 0.217, 0.000], 'std' : [0.114, 0.072, 0.205, 0.000], 'nMin' : [1, 1, 1, 51], 'nMax' : [1, 1, 1, 1], 'shape': (52, 4), } INCORRECT STATS { 'max' : [0.759, 0.963, 0.264, 0.000], 'min' : [0.379, 0.823, 0.000, 0.000], 'mean' : [0.506, 0.915, 0.056, 0.000], 'std' : [0.125, 0.039, 0.078, 0.000], 'nMin' : [1, 1, 1, 24], 'nMax' : [1, 1, 1, 1], 'shape': (26, 4), # score_diff, tp_score, tn_score, p, K, dcvs_clip_max, fg_power, homogerr_power 0.494, 0.494, 0.000, 73.000, 2, 0.500, 0.100, 10.000 see how seperability changes as we very things CommandLine: python -m ibeis.algo.hots.devcases --test-myquery python -m ibeis.algo.hots.devcases --test-myquery --show --index 0 python -m ibeis.algo.hots.devcases --test-myquery --show --index 1 python -m ibeis.algo.hots.devcases --test-myquery --show --index 2 References: http://en.wikipedia.org/wiki/Pareto_distribution <- look into Example: >>> # DISABLE_DOCTEST >>> from ibeis.all_imports import * # NOQA >>> from ibeis.algo.hots.devcases import * # NOQA >>> ut.dev_ipython_copypaster(myquery) if ut.inIPython() else myquery() >>> pt.show_if_requested() """ from ibeis.algo.hots import special_query # NOQA from ibeis.algo.hots import distinctiveness_normalizer # NOQA from ibeis import viz # NOQA import plottool as pt index = ut.get_argval('--index', int, 0) ibs, aid1, aid2, tn_aid = testdata_my_exmaples(index) qaids = [aid1] daids = [aid2] + [tn_aid] qvuuid = ibs.get_annot_visual_uuids(aid1) cfgdict_vsone = dict( sv_on=True, #sv_on=False, #codename='vsone_unnorm_dist_ratio_extern_distinctiveness', codename='vsone_unnorm_ratio_extern_distinctiveness', sver_output_weighting=True, ) use_cache = False save_qcache = False qres_list, qreq_ = ibs.query_chips(qaids, daids, cfgdict=cfgdict_vsone, return_request=True, use_cache=use_cache, save_qcache=save_qcache, verbose=True) qreq_.load_distinctiveness_normalizer() qres = qres_list[0] top_aids = qres.get_top_aids() # NOQA qres_orig = qres # NOQA def test_config(qreq_, qres_orig, cfgdict): """ function to grid search over """ qres_copy = copy.deepcopy(qres_orig) qreq_vsone_ = qreq_ qres_vsone = qres_copy filtkey = hstypes.FiltKeys.DISTINCTIVENESS newfsv_list, newscore_aids = special_query.get_extern_distinctiveness(qreq_, qres_copy, **cfgdict) special_query.apply_new_qres_filter_scores(qreq_vsone_, qres_vsone, newfsv_list, newscore_aids, filtkey) tp_score = qres_copy.aid2_score[aid2] tn_score = qres_copy.aid2_score[tn_aid] return qres_copy, tp_score, tn_score #[.01, .1, .2, .5, .6, .7, .8, .9, 1.0]), #FiltKeys = hstypes.FiltKeys # FIXME: Use other way of doing gridsearch grid_basis = distinctiveness_normalizer.DCVS_DEFAULT.get_grid_basis() gridsearch = ut.GridSearch(grid_basis, label='qvuuid=%r' % (qvuuid,)) print('Begin Grid Search') for cfgdict in ut.ProgressIter(gridsearch, lbl='GridSearch'): qres_copy, tp_score, tn_score = test_config(qreq_, qres_orig, cfgdict) gridsearch.append_result(tp_score, tn_score) print('Finish Grid Search') # Get best result best_cfgdict = gridsearch.get_rank_cfgdict() qres_copy, tp_score, tn_score = test_config(qreq_, qres_orig, best_cfgdict) # Examine closely what you can do with scores if False: qres_copy = copy.deepcopy(qres_orig) qreq_vsone_ = qreq_ filtkey = hstypes.FiltKeys.DISTINCTIVENESS newfsv_list, newscore_aids = special_query.get_extern_distinctiveness(qreq_, qres_copy, **cfgdict) ut.embed() def make_cm_very_old_tuple(qres_copy): assert ut.listfind(qres_copy.filtkey_list, filtkey) is None weight_filters = hstypes.WEIGHT_FILTERS weight_filtxs, nonweight_filtxs = special_query.index_partition(qres_copy.filtkey_list, weight_filters) aid2_fsv = {} aid2_fs = {} aid2_score = {} for new_fsv_vsone, daid in zip(newfsv_list, newscore_aids): pass break #scorex_vsone = ut.listfind(qres_copy.filtkey_list, filtkey) #if scorex_vsone is None: # TODO: add spatial verification as a filter score # augment the vsone scores # TODO: paramaterize weighted_ave_score = True if weighted_ave_score: # weighted average scoring new_fs_vsone = special_query.weighted_average_scoring(new_fsv_vsone, weight_filtxs, nonweight_filtxs) else: # product scoring new_fs_vsone = special_query.product_scoring(new_fsv_vsone) new_score_vsone = new_fs_vsone.sum() aid2_fsv[daid] = new_fsv_vsone aid2_fs[daid] = new_fs_vsone aid2_score[daid] = new_score_vsone return aid2_fsv, aid2_fs, aid2_score # Look at plot of query products for new_fsv_vsone, daid in zip(newfsv_list, newscore_aids): new_fs_vsone = special_query.product_scoring(new_fsv_vsone) scores_list = np.array(new_fs_vsone)[:, None].T pt.plot_sorted_scores(scores_list, logscale=False, figtitle=str(daid)) pt.iup() special_query.apply_new_qres_filter_scores(qreq_vsone_, qres_copy, newfsv_list, newscore_aids, filtkey) # PRINT INFO import functools #ut.rrrr() get_stats_str = functools.partial(ut.get_stats_str, axis=0, newlines=True, precision=3) tp_stats_str = ut.align(get_stats_str(qres_copy.aid2_fsv[aid2]), ':') tn_stats_str = ut.align(get_stats_str(qres_copy.aid2_fsv[tn_aid]), ':') info_str_list = [] info_str_list.append('qres_copy.filtkey_list = %r' % (qres_copy.filtkey_list,)) info_str_list.append('CORRECT STATS') info_str_list.append(tp_stats_str) info_str_list.append('INCORRECT STATS') info_str_list.append(tn_stats_str) info_str = '\n'.join(info_str_list) print(info_str) # SHOW BEST RESULT #qres_copy.ishow_top(ibs, fnum=pt.next_fnum()) #qres_orig.ishow_top(ibs, fnum=pt.next_fnum()) # Text Informatio param_lbl = 'dcvs_power' param_stats_str = gridsearch.get_dimension_stats_str(param_lbl) print(param_stats_str) csvtext = gridsearch.get_csv_results(10) print(csvtext) # Paramter visuzliation fnum = pt.next_fnum() # plot paramter influence param_label_list = gridsearch.get_param_lbls() pnum_ = pt.get_pnum_func(2, len(param_label_list)) for px, param_label in enumerate(param_label_list): gridsearch.plot_dimension(param_label, fnum=fnum, pnum=pnum_(px)) # plot match figure pnum2_ = pt.get_pnum_func(2, 2) qres_copy.show_matches(ibs, aid2, fnum=fnum, pnum=pnum2_(2)) qres_copy.show_matches(ibs, tn_aid, fnum=fnum, pnum=pnum2_(3)) # Add figure labels figtitle = 'Effect of parameters on vsone separation for a single case' subtitle = 'qvuuid = %r' % (qvuuid) figtitle += '\n' + subtitle pt.set_figtitle(figtitle) # Save Figure #fig_fpath = pt.save_figure(usetitle=True) #print(fig_fpath) # Write CSV Results #csv_fpath = fig_fpath + '.csv.txt' #ut.write_to(csv_fpath, csvtext) #qres_copy.ishow_top(ibs) #from matplotlib import pyplot as plt #plt.show() #print(ut.list_str())) # TODO: plot max variation dims #import plottool as pt #pt.plot(p_list, diff_list) """
def test_rot_invar(): r""" CommandLine: python -m pyhesaff test_rot_invar --show --rebuild-hesaff --no-rmbuild python -m pyhesaff test_rot_invar --show --nocpp python -m vtool.tests.dummy testdata_ratio_matches --show --ratio_thresh=1.0 --rotation_invariance --rebuild-hesaff python -m vtool.tests.dummy testdata_ratio_matches --show --ratio_thresh=1.1 --rotation_invariance --rebuild-hesaff Example: >>> # DISABLE_DODCTEST >>> from pyhesaff._pyhesaff import * # NOQA >>> test_rot_invar() """ import cv2 import utool as ut import vtool as vt import plottool as pt TAU = 2 * np.pi fnum = pt.next_fnum() NUM_PTS = 5 # 9 theta_list = np.linspace(0, TAU, NUM_PTS, endpoint=False) nRows, nCols = pt.get_square_row_cols(len(theta_list), fix=True) next_pnum = pt.make_pnum_nextgen(nRows, nCols) # Expand the border a bit around star.png pad_ = 100 img_fpath = ut.grab_test_imgpath('star.png') img_fpath2 = vt.pad_image_ondisk(img_fpath, pad_, value=26) for theta in theta_list: print('-----------------') print('theta = %r' % (theta,)) #theta = ut.get_argval('--theta', type_=float, default=TAU * 3 / 8) img_fpath = vt.rotate_image_ondisk(img_fpath2, theta, borderMode=cv2.BORDER_REPLICATE) if not ut.get_argflag('--nocpp'): (kpts_list_ri, vecs_list2) = detect_feats(img_fpath, rotation_invariance=True) kpts_ri = ut.strided_sample(kpts_list_ri, 2) (kpts_list_gv, vecs_list1) = detect_feats(img_fpath, rotation_invariance=False) kpts_gv = ut.strided_sample(kpts_list_gv, 2) # find_kpts_direction imgBGR = vt.imread(img_fpath) kpts_ripy = vt.find_kpts_direction(imgBGR, kpts_gv, DEBUG_ROTINVAR=False) # Verify results stdout #print('nkpts = %r' % (len(kpts_gv))) #print(vt.kpts_repr(kpts_gv)) #print(vt.kpts_repr(kpts_ri)) #print(vt.kpts_repr(kpts_ripy)) # Verify results plot pt.figure(fnum=fnum, pnum=next_pnum()) pt.imshow(imgBGR) #if len(kpts_gv) > 0: # pt.draw_kpts2(kpts_gv, ori=True, ell_color=pt.BLUE, ell_linewidth=10.5) ell = False rect = True if not ut.get_argflag('--nocpp'): if len(kpts_ri) > 0: pt.draw_kpts2(kpts_ri, rect=rect, ell=ell, ori=True, ell_color=pt.RED, ell_linewidth=5.5) if len(kpts_ripy) > 0: pt.draw_kpts2(kpts_ripy, rect=rect, ell=ell, ori=True, ell_color=pt.GREEN, ell_linewidth=3.5) #print('\n'.join(vt.get_ori_strs(np.vstack([kpts_gv, kpts_ri, kpts_ripy])))) #ut.embed(exec_lines=['pt.update()']) pt.set_figtitle('green=python, red=C++') pt.show_if_requested()