def localize(): # Global variables that may be set in this function global DO_BEAMFORM global done # Setup search space source_plane = OrientedSourcePlane(SOURCE_PLANE_NORMAL, SOURCE_PLANE_UP, SOURCE_PLANE_OFFSET) space = SearchSpace(MIC_LOC, CAMERA_LOC, [source_plane], MIC_FORWARD, MIC_ABOVE) # Setup pyaudio instances pa = pyaudio.PyAudio() helper = AudioHelper(pa) listener = CommandListener() plot_manager = PlotManager('vmpf_2d_weightings_') localizer = SRPPFTrackingLocalizer(mic_positions=mic_layout, search_space=space, n_particles=N_PARTICLES, state_kappa=STATE_KAPPA, dft_len=FFT_LENGTH, sample_rate=SAMPLE_RATE, n_theta=N_THETA, n_phi=N_PHI) beamformer = BeamFormer(mic_layout, SAMPLE_RATE) # Setup STFT object stft = StftManager(dft_length=FFT_LENGTH, window_length=WINDOW_LENGTH, hop_length=HOP_LENGTH, use_window_fcn=True, n_channels=NUM_CHANNELS_IN, dtype=DATA_TYPE) # Setup devices in_device = helper.get_input_device_from_user() if PLAY_AUDIO: out_device = helper.get_output_device_from_user() else: out_device = helper.get_default_output_device_info() # Setup streams in_stream = pa.open(rate=SAMPLE_RATE, channels=NUM_CHANNELS_IN, format=SAMPLE_TYPE, frames_per_buffer=FRAMES_PER_BUF, input=True, input_device_index=int(in_device['index']), stream_callback=read_in_data) out_stream = pa.open(rate=SAMPLE_RATE, channels=NUM_CHANNELS_OUT, format=SAMPLE_TYPE, output=True, frames_per_buffer=FRAMES_PER_BUF, output_device_index=int(out_device['index']), stream_callback=write_out_data) # Start recording/playing back in_stream.start_stream() out_stream.start_stream() # Start thread to check for user quit listener.start_polling() # Setup directions and alignment matrices direcs = localizer.get_directions() align_mats = localizer.get_pos_align_mat() # Plotting setup if PLOT_PARTICLES: ptools.setup_halfpage_figsize() fig = plt.figure() ax = ptools.get_halfpage_axis(fig) #ax = fig.add_subplot(111) #particle_plots, estimate_plot = setup_particle_plot(ax, 'b', 'r', .4) particle_plots2, estimate_plot2 = setup_particle_plot(ax, 'k', 'r', .3) #particle_plots3, estimate_plot3 = setup_particle_plot(ax, 'g', 'r', .8) spher_coords = localizer.get_spher_directions() theta = spher_coords[1, :] lhood_plot, = ax.plot(theta, np.ones(theta.shape), 'b') ax.set_ylim(0, 1.2) plt.show(block=False) if PLOT_POLAR: fig = plt.figure() ax = fig.add_subplot(111, projection='polar') ax.set_rlim(0, 1) plt.show(block=False) # Setup space for plotting in new coordinates spher_coords = localizer.get_spher_directions() theta = spher_coords[1, :] pol_plot, = plt.plot(theta, np.ones(theta.shape)) post_plot, = plt.plot(theta, np.ones(theta.shape), 'green') ax.set_ylim(0, 1) if DO_BEAMFORM: pol_beam_plot, = plt.plot(theta, np.ones(theta.shape), 'red') if PLOT_CARTES: fig = plt.figure() ax = fig.add_subplot(111) ax.set_ylim(0, 1) plt.show(block=False) # Setup space for plotting in new coordinates spher_coords = localizer.get_spher_directions() theta = spher_coords[1, :] pol_plot, = plt.plot(theta, np.ones(theta.shape)) post_plot, = plt.plot(theta, np.ones(theta.shape), 'green') ax.set_ylim(0, 1) ax.set_xlim(0, np.pi) if DO_BEAMFORM: pol_beam_plot, = plt.plot(theta, np.ones(theta.shape), 'red') if PLOT_2D: n_past_samples = 100 noise_color = 'r' color = 'b' particle_plot = ParticleFilterPlot(N_PARTICLES, n_space=N_THETA, n_past_samples=n_past_samples, n_estimates=2, particle_color=color, distr_cmap='bone', estimate_colors=[noise_color, color]) if VIDEO_OVERLAY: fig = plt.figure() ax = fig.add_subplot(111) vc = cv2.VideoCapture(0) video_handle, vid_part_plots, vid_estim_plot = setup_video_handle(ax, 720, 1280) plt.show(block=False) if EXTERNAL_PLOT: fig = plt.figure() ax = fig.add_subplot(111) plt.show(block=False) count = 0 try: while in_stream.is_active() or out_stream.is_active(): done = listener.quit() data_available = in_buf.wait_for_read(WINDOW_LENGTH, TIMEOUT) if data_available: if listener.switch_beamforming(): DO_BEAMFORM = not DO_BEAMFORM # Get data from the circular buffer data = in_buf.read_samples(WINDOW_LENGTH) # Perform an stft stft.performStft(data) # Process dfts from windowed segments of input dfts = stft.getDFTs() rffts = mat.to_all_real_matlab_format(dfts) d, energy = localizer.get_distribution_real(rffts[:, :, 0], 'gcc') # Use first hop post = localizer.get_distribution(rffts[:, :, 0]) w = np.asarray(post.weights) ps = np.asarray(post.particles) ps[:, 1] = np.abs(ps[:, 1]) # Ensure remain positive estimate = w.dot(ps) #if energy < 1000: # continue # Do beam forming if DO_BEAMFORM: align_mat = align_mats[:, :, ind] filtered = beamformer.filter_real(rffts, align_mat) mat.set_dfts_real(dfts, filtered, n_channels=2) # Take care of plotting if count % 1 == 0: if PLOT_PARTICLES: #plot_particles(particle_plots, estimate_plot, ps, w, estimate) plot_particles(particle_plots2, estimate_plot2, ps2, w2, estimate2) #plot_particles(particle_plots3, estimate_plot3, ps3, w3, estimate3) dist = localizer.to_spher_grid(d) dist /= (np.max(dist) + consts.EPS) lhood_plot.set_ydata(dist) plt.draw() if listener.savefig(): plot_manager.savefig(fig) if PLOT_POLAR or PLOT_CARTES: dist = d #dist -= np.min(dist) dist = localizer.to_spher_grid(dist) post = localizer.to_spher_grid(post) * 50 #dist /= np.max(dist) if np.max(dist) > 1: dist /= np.max(dist) if np.max(post) > 1: post /= np.max(post) pol_plot.set_ydata(dist[0, :]) post_plot.set_ydata(post[0, :]) if DO_BEAMFORM: # Get beam plot freq = 1900. # Hz response = beamformer.get_beam(align_mat, align_mats, rffts, freq) response = localizer.to_spher_grid(response) if np.max(response) > 1: response /= np.max(response) pol_beam_plot.set_ydata(response[-1, :]) plt.draw() if PLOT_2D: dist = localizer.to_spher_grid(d) noisy = THETA_SPACE[np.argmax(dist)] theta_parts = np.arctan2(ps[:, 1], ps[:, 0]) estimate = w.dot(ps) estimate = np.arctan2(estimate[1], estimate[0]) particle_plot.update(dist, theta_parts, w, [noisy, estimate]) if listener.savefig(): plot_manager.savefig(particle_plot.get_figure()) if VIDEO_OVERLAY: _, cvimage = vc.read() overlay_particles(video_handle, vid_part_plots, vid_estim_plot, \ cvimage, ps, w, estimate) plt.draw() if SAVE_FRAMES: fig.canvas.print_rgba('out/out' + str(count) + '.mat') count += 1 # Get the istft of the processed data if PLAY_AUDIO or RECORD_AUDIO: new_data = stft.performIStft() new_data = out_buf.reduce_channels(new_data, NUM_CHANNELS_IN, NUM_CHANNELS_OUT) # Write out the new, altered data if PLAY_AUDIO: if out_buf.get_available_write() >= WINDOW_LENGTH: out_buf.write_samples(new_data) if RECORD_AUDIO: if record_buf.get_available_write() >= WINDOW_LENGTH: record_buf.write_samples(new_data) except KeyboardInterrupt: print "Program interrupted" listener.set_quit(True) print "Cleaning up" in_stream.stop_stream() in_stream.close() out_stream.stop_stream() out_stream.close() pa.terminate() # Take care of output file if RECORD_AUDIO: print "Writing output file" make_wav() print "Done"
def localize(): # Global variables that may be set in this function global switch_beamforming global DO_BEAMFORM global done # Setup search space source_plane = OrientedSourcePlane(SOURCE_PLANE_NORMAL, SOURCE_PLANE_UP, SOURCE_PLANE_OFFSET) space = SearchSpace(MIC_LOC, CAMERA_LOC, [source_plane], MIC_FORWARD, MIC_ABOVE) # Setup pyaudio instances pa = pyaudio.PyAudio() helper = AudioHelper(pa) listener = CommandListener() plot_manager = PlotManager() #localizer = GridTrackingLocalizer(mic_positions=mic_layout, # search_space=space, # source_cov=SOURCE_LOCATION_COV, # dft_len=FFT_LENGTH, # sample_rate=SAMPLE_RATE, # n_theta=N_THETA, # n_phi=N_PHI) localizer = KalmanTrackingLocalizer(mic_positions=mic_layout, search_space=space, mic_forward=MIC_FORWARD, mic_above=MIC_ABOVE, trans_mat=STATE_TRANSITION_MAT, state_cov=STATE_TRANSITION_MAT, emission_mat=EMISSION_MAT, emission_cov=EMISSION_COV, dft_len=FFT_LENGTH, sample_rate=SAMPLE_RATE, n_theta=N_THETA, n_phi=N_PHI) beamformer = BeamFormer(mic_layout, SAMPLE_RATE) # Setup STFT object stft = StftManager(dft_length=FFT_LENGTH, window_length=WINDOW_LENGTH, hop_length=HOP_LENGTH, use_window_fcn=True, n_channels=NUM_CHANNELS_IN, dtype=DATA_TYPE) # Setup devices in_device = helper.get_input_device_from_user() if PLAY_AUDIO: out_device = helper.get_output_device_from_user() else: out_device = helper.get_default_output_device_info() # Setup streams in_stream = pa.open(rate=SAMPLE_RATE, channels=NUM_CHANNELS_IN, format=SAMPLE_TYPE, frames_per_buffer=FRAMES_PER_BUF, input=True, input_device_index=int(in_device['index']), stream_callback=read_in_data) out_stream = pa.open(rate=SAMPLE_RATE, channels=NUM_CHANNELS_OUT, format=SAMPLE_TYPE, output=True, frames_per_buffer=FRAMES_PER_BUF, output_device_index=int(out_device['index']), stream_callback=write_out_data) # Start recording/playing back in_stream.start_stream() out_stream.start_stream() # Start thread to check for user quit listener.start_polling() # Setup directions and alignment matrices direcs = localizer.get_directions() align_mats = localizer.get_pos_align_mat() # Plotting setup if PLOT_POLAR: fig = plt.figure() ax = fig.add_subplot(111, projection='polar') ax.set_rlim(0, 1) plt.show(block=False) # Setup space for plotting in new coordinates spher_coords = localizer.get_spher_directions() theta = spher_coords[1, :] pol_plot, = plt.plot(theta, np.zeros(theta.shape)) post_plot, = plt. plot(theta, np.zeros(theta.shape), 'green') ax.set_ylim(0, 1) if DO_BEAMFORM: pol_beam_plot, = plt.plot(theta, np.ones(theta.shape), 'red') if PLOT_CARTES: fig = plt.figure() ax = plotting.get_halfpage_axis(fig) #ax = fig.add_subplot(111) plt.show(block=False) # Setup space for plotting in new coordinates spher_coords = localizer.get_spher_directions() theta = spher_coords[1, :] theta = np.linspace(0, 1, theta.shape[0]) gcc_plots = [] gcc_shaping_vals = [1, 2, 3, 4, 5] for i in gcc_shaping_vals: plot, = plt.plot(theta, np.zeros(theta.shape)) gcc_plots.append(plot) pol_plot, = plt.plot(theta, np.zeros(theta.shape), 'r--') post_plot, = plt. plot(theta, np.zeros(theta.shape), 'b') ax.set_ylim(0, 1.2) ax.set_xlim(0, 1) # Normalized #ax.set_xlabel('Angle $\left(\\frac{1}{\pi}\\right)$') #ax.set_ylabel('Normalized GCC') if DO_BEAMFORM: pol_beam_plot, = plt.plot(theta, np.ones(theta.shape), 'red') if PLOT_2D: n_past_samples = 200 filter_plot = FilterPlot(N_THETA, n_past_samples, 2) save_plot = filter_plot # For saving figures if VIDEO_OVERLAY: vc = cv2.VideoCapture(0) video_handle, video_plot = setup_video_handle(720, 1280) plt.show(block=False) if EXTERNAL_PLOT: fig = plt.figure() ax = fig.add_subplot(111) plt.show(block=False) count = 0 try: while in_stream.is_active() or out_stream.is_active(): done = listener.quit() data_available = in_buf.wait_for_read(WINDOW_LENGTH, TIMEOUT) if data_available: if listener.switch_beamforming(): DO_BEAMFORM = not DO_BEAMFORM if listener.savefig(): plot_manager.savefig(save_plot.get_figure()) # Get data from circular buffer data = in_buf.read_samples(WINDOW_LENGTH) # Perform an stft stft.performStft(data) # Process dfts from windowed segments of input dfts = stft.getDFTs() rffts = mat.to_all_real_matlab_format(dfts) gccs = [] #for k in gcc_shaping_vals: # d, energy = localizer.get_distribution_real( # rffts[:, :, 0], 'mcc', k) # Use first hop # gccs.append(d) d, energy = localizer.get_distribution_real(rffts[:, :, 0], 'beam') # Use first hop def w(cpmat): cpmat /= (np.abs(cpmat + consts.EPS)) return cpmat post = localizer.get_distribution(rffts[:, :, 0], 'beam') #post, bla = localizer.get_distribution_real(rffts[:, :, 0], 'mcc') #post = localizer.get_distribution(rffts[:, :, 0]) ind = np.argmax(d) u = 1.5 * direcs[:, ind] # Direction of arrival #if energy < 500: #continue # Do beam forming if DO_BEAMFORM: align_mat = align_mats[:, :, ind] filtered = beamformer.filter_real(rffts, align_mat) mat.set_dfts_real(dfts, filtered, n_channels=2) # Take care of plotting if count % 1 == 0: if PLOT_POLAR or PLOT_CARTES: dist = d #dist -= np.min(dist) dist = localizer.to_spher_grid(dist) print post.shape post = localizer.to_spher_grid(post) * 50 dist /= np.max(dist) if np.max(dist) > 1: dist /= np.max(dist) if np.max(post) > 1: post /= np.max(post) pol_plot.set_ydata(dist[0, :]) post_plot.set_ydata(post[0, :]) #for i, plot in enumerate(gcc_plots): # gcc = gccs[i] # gcc /= (np.max(gcc) + consts.EPS) # plot.set_ydata(gccs[i]) if DO_BEAMFORM: # Get beam plot freq = 2500. # Hz response = beamformer.get_beam( align_mat, align_mats, rffts, freq ) response = localizer.to_spher_grid(response) if np.max(response) > 1: response /= np.max(response) pol_beam_plot.set_ydata(response[-1, :]) plt.draw() if PLOT_2D: dist = localizer.to_spher_grid(d) p = localizer.to_spher_grid(post) est1 = THETA_SPACE[np.argmax(p)] est2 = THETA_SPACE[np.argmax(dist)] filter_plot.update(dist, [est1, est2]) if VIDEO_OVERLAY: post /= np.max(post + consts.EPS) dist = d - np.min(d) dist = dist / np.max(dist + consts.EPS) _, cvimage = vc.read() overlay_distribution(video_handle, video_plot, cvimage, dist[::-1]) plt.draw() count += 1 # Get the istft of the processed data if PLAY_AUDIO or RECORD_AUDIO: new_data = stft.performIStft() new_data = out_buf.reduce_channels(new_data, NUM_CHANNELS_IN, NUM_CHANNELS_OUT) # Write out the new, altered data if PLAY_AUDIO: if out_buf.get_available_write() >= WINDOW_LENGTH: out_buf.write_samples(new_data) if RECORD_AUDIO: if record_buf.get_available_write() >= WINDOW_LENGTH: record_buf.write_samples(new_data) except KeyboardInterrupt: print "Program interrupted" listener.set_quit(True) print "Cleaning up" in_stream.stop_stream() in_stream.close() out_stream.stop_stream() out_stream.close() pa.terminate() # Take care of output file if RECORD_AUDIO: print "Writing output file" make_wav() print "Done"
def localize(): global switch_beamforming global DO_BEAMFORM global done # Setup search space source_plane = OrientedSourcePlane(SOURCE_PLANE_NORMAL, SOURCE_PLANE_UP, SOURCE_PLANE_OFFSET) space = SearchSpace(MIC_LOC, CAMERA_LOC, [source_plane], MIC_FORWARD, MIC_ABOVE) # Setup camera camera = SonyCamera(URL, CAM_FORWARD, CAM_ABOVE) prev_direc = np.array([1., 0., 0.]) if DO_TRACK: camera.face_direction(prev_direc) # Will force login # Setup pyaudio instances pa = pyaudio.PyAudio() helper = AudioHelper(pa) listener = CommandListener() plot_manager = PlotManager('3d_vm_srp_') localizer = VonMisesTrackingLocalizer(mic_positions=mic_layout, search_space=space, n_particles=N_PARTICLES, state_kappa=STATE_KAPPA, #observation_kappa=OBS_KAPPA, observation_kappa=5, outlier_prob=.5, dft_len=FFT_LENGTH, sample_rate=SAMPLE_RATE, n_theta=N_THETA, n_phi=N_PHI) localizer2 = VonMisesTrackingLocalizer(mic_positions=mic_layout, search_space=space, n_particles=N_PARTICLES, state_kappa=STATE_KAPPA, #observation_kappa=OBS_KAPPA, observation_kappa=25, outlier_prob=0, dft_len=FFT_LENGTH, sample_rate=SAMPLE_RATE, n_theta=N_THETA, n_phi=N_PHI) localizer3 = VonMisesTrackingLocalizer(mic_positions=mic_layout, search_space=space, n_particles=N_PARTICLES, state_kappa=STATE_KAPPA, observation_kappa=OBS_KAPPA, outlier_prob=.6, dft_len=FFT_LENGTH, sample_rate=SAMPLE_RATE, n_theta=N_THETA, n_phi=N_PHI) beamformer = BeamFormer(mic_layout, SAMPLE_RATE) # Setup STFT object stft = StftManager(dft_length=FFT_LENGTH, window_length=WINDOW_LENGTH, hop_length=HOP_LENGTH, use_window_fcn=True, n_channels=NUM_CHANNELS_IN, dtype=DATA_TYPE) # Setup devices in_device = helper.get_input_device_from_user() if PLAY_AUDIO: out_device = helper.get_output_device_from_user() else: out_device = helper.get_default_output_device_info() # Setup streams in_stream = pa.open(rate=SAMPLE_RATE, channels=NUM_CHANNELS_IN, format=SAMPLE_TYPE, frames_per_buffer=FRAMES_PER_BUF, input=True, input_device_index=int(in_device['index']), stream_callback=read_in_data) out_stream = pa.open(rate=SAMPLE_RATE, channels=NUM_CHANNELS_OUT, format=SAMPLE_TYPE, output=True, frames_per_buffer=FRAMES_PER_BUF, output_device_index=int(out_device['index']), stream_callback=write_out_data) # Start recording/playing back in_stream.start_stream() out_stream.start_stream() # Start thread to check for user quit listener.start_polling() # Setup directions and alignment matrices direcs = localizer.get_directions() align_mats = localizer.get_pos_align_mat() # Plotting setup if PLOT_PARTICLES: ml_color = 'r' color = 'b'; particle_plot = ParticleHemispherePlot( N_PARTICLES, color, n_estimates=2, n_past_estimates=100, plot_lines=[False, True], elev=60, azim=45, estim_colors=[ml_color, color]) #color = 'b' #particle_plot2 = ParticleHemispherePlot( # N_PARTICLES, color, n_estimates=2, n_past_estimates=100, # plot_lines=[False, True], elev=60, azim=45, estim_colors=[ml_color, color]) #color = 'r' #particle_plot3 = ParticleHemispherePlot( # N_PARTICLES, color, n_estimates=2, n_past_estimates=100, # plot_lines=[False, True], elev=60, azim=45, estim_colors=[ml_color, color]) if PLOT_POLAR: fig = plt.figure() ax = fig.add_subplot(111, projection='polar') ax.set_rlim(0, 1) plt.show(block=False) # Setup space for plotting in new coordinates spher_coords = localizer.get_spher_directions() theta = spher_coords[1, :] pol_plot, = plt.plot(theta, np.ones(theta.shape)) post_plot, = plt. plot(theta, np.ones(theta.shape), 'green') ax.set_ylim(0, 1) if DO_BEAMFORM: pol_beam_plot, = plt.plot(theta, np.ones(theta.shape), 'red') if PLOT_CARTES: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') plt.show(block=False) x = localizer.to_spher_grid(direcs[0, :]) y = localizer.to_spher_grid(direcs[1, :]) z = localizer.to_spher_grid(direcs[2, :]) #scat = ax.scatter(x, y, z, s=100) if EXTERNAL_PLOT: fig = plt.figure() ax = fig.add_subplot(111) plt.show(block=False) count = 0 estimate = np.array([1., 0., 0.]) estimate2 = np.array([1., 0., 0.]) try: while in_stream.is_active() or out_stream.is_active(): done = listener.quit() data_available = in_buf.wait_for_read(WINDOW_LENGTH, TIMEOUT) if data_available: if switch_beamforming: DO_BEAMFORM = not DO_BEAMFORM switch_beamforming = False # Get data from the circular buffer data = in_buf.read_samples(WINDOW_LENGTH) # Perform an stft stft.performStft(data) # Process dfts from windowed segments of input dfts = stft.getDFTs() rffts = mat.to_all_real_matlab_format(dfts) d, energy = localizer.get_distribution_real(rffts[:, :, 0], 'gcc') # Use first hop # Find ml_est ml_est = direcs[:, np.argmax(d)] #print energy #if energy < 1500: # continue post = localizer.get_distribution(rffts[:, :, 0]) # PyBayes EmpPdf post2 = localizer2.get_distribution(rffts[:, :, 0]) post3 = localizer3.get_distribution(rffts[:, :, 0]) # Get estimate from particles w = np.asarray(post.weights) ps = np.asarray(post.particles) w2 = np.asarray(post2.weights) ps2 = np.asarray(post2.particles) w3 = np.asarray(post3.weights) ps3 = np.asarray(post3.particles) #estimate2 = w2.dot(ps2) if DO_TRACK and count % TRACKING_FREQ == 0: #v = np.array([1, 0, 1]) v = estimate direc = space.get_camera_dir(v) if direc is None or not direc.any(): direc = prev_direc else: direc[2] = -.5 prev_direc = direc # Send camera new direction camera.face_direction(direc) # Do beam forming if DO_BEAMFORM: align_mat = align_mats[:, :, ind] filtered = beamformer.filter_real(rffts, align_mat) mat.set_dfts_real(dfts, filtered, n_channels=2) # Take care of plotting if count % 1 == 0: if PLOT_PARTICLES: estimate = w.dot(ps) estimate /= (mat.norm2(estimate) + consts.EPS) particle_plot.update(ps, w, [ml_est, estimate]) #estimate2 = w2.dot(ps2) #estimate2 /= (mat.norm2(estimate2) + consts.EPS) #particle_plot2.update(ps2, w2, [ml_est, estimate2]) #estimate3 = w3.dot(ps3) #estimate3 /= (mat.norm2(estimate3) + consts.EPS) #particle_plot3.update(ps3, w3, [ml_est, estimate3]) if listener.savefig(): plot_manager.savefig(particle_plot.get_figure()) #plot_manager.savefig(particle_plot2.get_figure()) #plot_manager.savefig(particle_plot3.get_figure()) if PLOT_CARTES: ax.cla() ax.grid(False) #d = localizer.to_spher_grid(post / (np.max(post) + consts.EPS)) #d = localizer.to_spher_grid(d / (np.max(d) + consts.EPS)) ax.scatter(x, y, z, c=d, s=40) #ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolor=plt.cm.gist_heat(d)) u = estimate ax.plot([0, u[0]], [0, u[1]], [0, u[2]], c='black', linewidth=3) if DO_BEAMFORM: if np.max(np.abs(response)) > 1: response /= np.max(np.abs(response)) X = response * x Y = response * y Z = response * z ax.plot_surface(X, Y, Z, rstride=1, cstride=1, color='white') ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) ax.set_zlim(0, 1) #ax.view_init(90, -90) fig.canvas.draw() if PLOT_2D: # Get unconditional distribution dist = localizer.to_spher_grid(d) dist -= np.min(dist) dist /= (np.sum(dist) + consts.EPS) sample_mat[:, :-1] = sample_mat[:, 1:] sample_mat[:, -1] = dist # Get kalman estimate maxind = np.argmax(post) estimate_mat[:-1] = estimate_mat[1:] estimate_mat[-1] = maxind plot_2d.set_array(sample_mat) state_est_plot.set_ydata(estimate_mat) plt.draw() count += 1 # Get the istft of the processed data if PLAY_AUDIO or RECORD_AUDIO: new_data = stft.performIStft() new_data = out_buf.reduce_channels(new_data, NUM_CHANNELS_IN, NUM_CHANNELS_OUT) # Write out the new, altered data if PLAY_AUDIO: if out_buf.get_available_write() >= WINDOW_LENGTH: out_buf.write_samples(new_data) if RECORD_AUDIO: if record_buf.get_available_write() >= WINDOW_LENGTH: record_buf.write_samples(new_data) except KeyboardInterrupt: print "Program interrupted" listener.set_quit(True) print "Cleaning up" in_stream.stop_stream() in_stream.close() out_stream.stop_stream() out_stream.close() pa.terminate() # Take care of output file if RECORD_AUDIO: print "Writing output file" make_wav() print "Done"
def localize(): # Global variables that may be set in this function global switch_beamforming global DO_BEAMFORM global done # Setup search space source_plane = OrientedSourcePlane(SOURCE_PLANE_NORMAL, SOURCE_PLANE_UP, SOURCE_PLANE_OFFSET) space = SearchSpace(MIC_LOC, CAMERA_LOC, [source_plane], MIC_FORWARD, MIC_ABOVE) # Setup pyaudio instances pa = pyaudio.PyAudio() helper = AudioHelper(pa) listener = CommandListener() plot_manager = PlotManager() #localizer = GridTrackingLocalizer(mic_positions=mic_layout, # search_space=space, # source_cov=SOURCE_LOCATION_COV, # dft_len=FFT_LENGTH, # sample_rate=SAMPLE_RATE, # n_theta=N_THETA, # n_phi=N_PHI) localizer = KalmanTrackingLocalizer(mic_positions=mic_layout, search_space=space, mic_forward=MIC_FORWARD, mic_above=MIC_ABOVE, trans_mat=STATE_TRANSITION_MAT, state_cov=STATE_TRANSITION_MAT, emission_mat=EMISSION_MAT, emission_cov=EMISSION_COV, dft_len=FFT_LENGTH, sample_rate=SAMPLE_RATE, n_theta=N_THETA, n_phi=N_PHI) beamformer = BeamFormer(mic_layout, SAMPLE_RATE) # Setup STFT object stft = StftManager(dft_length=FFT_LENGTH, window_length=WINDOW_LENGTH, hop_length=HOP_LENGTH, use_window_fcn=True, n_channels=NUM_CHANNELS_IN, dtype=DATA_TYPE) # Setup devices in_device = helper.get_input_device_from_user() if PLAY_AUDIO: out_device = helper.get_output_device_from_user() else: out_device = helper.get_default_output_device_info() # Setup streams in_stream = pa.open(rate=SAMPLE_RATE, channels=NUM_CHANNELS_IN, format=SAMPLE_TYPE, frames_per_buffer=FRAMES_PER_BUF, input=True, input_device_index=int(in_device['index']), stream_callback=read_in_data) out_stream = pa.open(rate=SAMPLE_RATE, channels=NUM_CHANNELS_OUT, format=SAMPLE_TYPE, output=True, frames_per_buffer=FRAMES_PER_BUF, output_device_index=int(out_device['index']), stream_callback=write_out_data) # Start recording/playing back in_stream.start_stream() out_stream.start_stream() # Start thread to check for user quit listener.start_polling() # Setup directions and alignment matrices direcs = localizer.get_directions() align_mats = localizer.get_pos_align_mat() # Plotting setup if PLOT_POLAR: fig = plt.figure() ax = fig.add_subplot(111, projection='polar') ax.set_rlim(0, 1) plt.show(block=False) # Setup space for plotting in new coordinates spher_coords = localizer.get_spher_directions() theta = spher_coords[1, :] pol_plot, = plt.plot(theta, np.zeros(theta.shape)) post_plot, = plt.plot(theta, np.zeros(theta.shape), 'green') ax.set_ylim(0, 1) if DO_BEAMFORM: pol_beam_plot, = plt.plot(theta, np.ones(theta.shape), 'red') if PLOT_CARTES: fig = plt.figure() ax = plotting.get_halfpage_axis(fig) #ax = fig.add_subplot(111) plt.show(block=False) # Setup space for plotting in new coordinates spher_coords = localizer.get_spher_directions() theta = spher_coords[1, :] theta = np.linspace(0, 1, theta.shape[0]) gcc_plots = [] gcc_shaping_vals = [1, 2, 3, 4, 5] for i in gcc_shaping_vals: plot, = plt.plot(theta, np.zeros(theta.shape)) gcc_plots.append(plot) pol_plot, = plt.plot(theta, np.zeros(theta.shape), 'r--') post_plot, = plt.plot(theta, np.zeros(theta.shape), 'b') ax.set_ylim(0, 1.2) ax.set_xlim(0, 1) # Normalized #ax.set_xlabel('Angle $\left(\\frac{1}{\pi}\\right)$') #ax.set_ylabel('Normalized GCC') if DO_BEAMFORM: pol_beam_plot, = plt.plot(theta, np.ones(theta.shape), 'red') if PLOT_2D: n_past_samples = 200 filter_plot = FilterPlot(N_THETA, n_past_samples, 2) save_plot = filter_plot # For saving figures if VIDEO_OVERLAY: vc = cv2.VideoCapture(0) video_handle, video_plot = setup_video_handle(720, 1280) plt.show(block=False) if EXTERNAL_PLOT: fig = plt.figure() ax = fig.add_subplot(111) plt.show(block=False) count = 0 try: while in_stream.is_active() or out_stream.is_active(): done = listener.quit() data_available = in_buf.wait_for_read(WINDOW_LENGTH, TIMEOUT) if data_available: if listener.switch_beamforming(): DO_BEAMFORM = not DO_BEAMFORM if listener.savefig(): plot_manager.savefig(save_plot.get_figure()) # Get data from circular buffer data = in_buf.read_samples(WINDOW_LENGTH) # Perform an stft stft.performStft(data) # Process dfts from windowed segments of input dfts = stft.getDFTs() rffts = mat.to_all_real_matlab_format(dfts) gccs = [] #for k in gcc_shaping_vals: # d, energy = localizer.get_distribution_real( # rffts[:, :, 0], 'mcc', k) # Use first hop # gccs.append(d) d, energy = localizer.get_distribution_real( rffts[:, :, 0], 'beam') # Use first hop def w(cpmat): cpmat /= (np.abs(cpmat + consts.EPS)) return cpmat post = localizer.get_distribution(rffts[:, :, 0], 'beam') #post, bla = localizer.get_distribution_real(rffts[:, :, 0], 'mcc') #post = localizer.get_distribution(rffts[:, :, 0]) ind = np.argmax(d) u = 1.5 * direcs[:, ind] # Direction of arrival #if energy < 500: #continue # Do beam forming if DO_BEAMFORM: align_mat = align_mats[:, :, ind] filtered = beamformer.filter_real(rffts, align_mat) mat.set_dfts_real(dfts, filtered, n_channels=2) # Take care of plotting if count % 1 == 0: if PLOT_POLAR or PLOT_CARTES: dist = d #dist -= np.min(dist) dist = localizer.to_spher_grid(dist) print post.shape post = localizer.to_spher_grid(post) * 50 dist /= np.max(dist) if np.max(dist) > 1: dist /= np.max(dist) if np.max(post) > 1: post /= np.max(post) pol_plot.set_ydata(dist[0, :]) post_plot.set_ydata(post[0, :]) #for i, plot in enumerate(gcc_plots): # gcc = gccs[i] # gcc /= (np.max(gcc) + consts.EPS) # plot.set_ydata(gccs[i]) if DO_BEAMFORM: # Get beam plot freq = 2500. # Hz response = beamformer.get_beam( align_mat, align_mats, rffts, freq) response = localizer.to_spher_grid(response) if np.max(response) > 1: response /= np.max(response) pol_beam_plot.set_ydata(response[-1, :]) plt.draw() if PLOT_2D: dist = localizer.to_spher_grid(d) p = localizer.to_spher_grid(post) est1 = THETA_SPACE[np.argmax(p)] est2 = THETA_SPACE[np.argmax(dist)] filter_plot.update(dist, [est1, est2]) if VIDEO_OVERLAY: post /= np.max(post + consts.EPS) dist = d - np.min(d) dist = dist / np.max(dist + consts.EPS) _, cvimage = vc.read() overlay_distribution(video_handle, video_plot, cvimage, dist[::-1]) plt.draw() count += 1 # Get the istft of the processed data if PLAY_AUDIO or RECORD_AUDIO: new_data = stft.performIStft() new_data = out_buf.reduce_channels(new_data, NUM_CHANNELS_IN, NUM_CHANNELS_OUT) # Write out the new, altered data if PLAY_AUDIO: if out_buf.get_available_write() >= WINDOW_LENGTH: out_buf.write_samples(new_data) if RECORD_AUDIO: if record_buf.get_available_write() >= WINDOW_LENGTH: record_buf.write_samples(new_data) except KeyboardInterrupt: print "Program interrupted" listener.set_quit(True) print "Cleaning up" in_stream.stop_stream() in_stream.close() out_stream.stop_stream() out_stream.close() pa.terminate() # Take care of output file if RECORD_AUDIO: print "Writing output file" make_wav() print "Done"
def localize(): # Global variables that may be set in this function global DO_BEAMFORM global done # Setup search space source_plane = OrientedSourcePlane(SOURCE_PLANE_NORMAL, SOURCE_PLANE_UP, SOURCE_PLANE_OFFSET) space = SearchSpace(MIC_LOC, CAMERA_LOC, [source_plane], MIC_FORWARD, MIC_ABOVE) # Setup pyaudio instances pa = pyaudio.PyAudio() helper = AudioHelper(pa) listener = CommandListener() plot_manager = PlotManager('vmpf_2d_weightings_') localizer = SRPPFTrackingLocalizer(mic_positions=mic_layout, search_space=space, n_particles=N_PARTICLES, state_kappa=STATE_KAPPA, dft_len=FFT_LENGTH, sample_rate=SAMPLE_RATE, n_theta=N_THETA, n_phi=N_PHI) beamformer = BeamFormer(mic_layout, SAMPLE_RATE) # Setup STFT object stft = StftManager(dft_length=FFT_LENGTH, window_length=WINDOW_LENGTH, hop_length=HOP_LENGTH, use_window_fcn=True, n_channels=NUM_CHANNELS_IN, dtype=DATA_TYPE) # Setup devices in_device = helper.get_input_device_from_user() if PLAY_AUDIO: out_device = helper.get_output_device_from_user() else: out_device = helper.get_default_output_device_info() # Setup streams in_stream = pa.open(rate=SAMPLE_RATE, channels=NUM_CHANNELS_IN, format=SAMPLE_TYPE, frames_per_buffer=FRAMES_PER_BUF, input=True, input_device_index=int(in_device['index']), stream_callback=read_in_data) out_stream = pa.open(rate=SAMPLE_RATE, channels=NUM_CHANNELS_OUT, format=SAMPLE_TYPE, output=True, frames_per_buffer=FRAMES_PER_BUF, output_device_index=int(out_device['index']), stream_callback=write_out_data) # Start recording/playing back in_stream.start_stream() out_stream.start_stream() # Start thread to check for user quit listener.start_polling() # Setup directions and alignment matrices direcs = localizer.get_directions() align_mats = localizer.get_pos_align_mat() # Plotting setup if PLOT_PARTICLES: ptools.setup_halfpage_figsize() fig = plt.figure() ax = ptools.get_halfpage_axis(fig) #ax = fig.add_subplot(111) #particle_plots, estimate_plot = setup_particle_plot(ax, 'b', 'r', .4) particle_plots2, estimate_plot2 = setup_particle_plot(ax, 'k', 'r', .3) #particle_plots3, estimate_plot3 = setup_particle_plot(ax, 'g', 'r', .8) spher_coords = localizer.get_spher_directions() theta = spher_coords[1, :] lhood_plot, = ax.plot(theta, np.ones(theta.shape), 'b') ax.set_ylim(0, 1.2) plt.show(block=False) if PLOT_POLAR: fig = plt.figure() ax = fig.add_subplot(111, projection='polar') ax.set_rlim(0, 1) plt.show(block=False) # Setup space for plotting in new coordinates spher_coords = localizer.get_spher_directions() theta = spher_coords[1, :] pol_plot, = plt.plot(theta, np.ones(theta.shape)) post_plot, = plt.plot(theta, np.ones(theta.shape), 'green') ax.set_ylim(0, 1) if DO_BEAMFORM: pol_beam_plot, = plt.plot(theta, np.ones(theta.shape), 'red') if PLOT_CARTES: fig = plt.figure() ax = fig.add_subplot(111) ax.set_ylim(0, 1) plt.show(block=False) # Setup space for plotting in new coordinates spher_coords = localizer.get_spher_directions() theta = spher_coords[1, :] pol_plot, = plt.plot(theta, np.ones(theta.shape)) post_plot, = plt.plot(theta, np.ones(theta.shape), 'green') ax.set_ylim(0, 1) ax.set_xlim(0, np.pi) if DO_BEAMFORM: pol_beam_plot, = plt.plot(theta, np.ones(theta.shape), 'red') if PLOT_2D: n_past_samples = 100 noise_color = 'r' color = 'b' particle_plot = ParticleFilterPlot( N_PARTICLES, n_space=N_THETA, n_past_samples=n_past_samples, n_estimates=2, particle_color=color, distr_cmap='bone', estimate_colors=[noise_color, color]) if VIDEO_OVERLAY: fig = plt.figure() ax = fig.add_subplot(111) vc = cv2.VideoCapture(0) video_handle, vid_part_plots, vid_estim_plot = setup_video_handle( ax, 720, 1280) plt.show(block=False) if EXTERNAL_PLOT: fig = plt.figure() ax = fig.add_subplot(111) plt.show(block=False) count = 0 try: while in_stream.is_active() or out_stream.is_active(): done = listener.quit() data_available = in_buf.wait_for_read(WINDOW_LENGTH, TIMEOUT) if data_available: if listener.switch_beamforming(): DO_BEAMFORM = not DO_BEAMFORM # Get data from the circular buffer data = in_buf.read_samples(WINDOW_LENGTH) # Perform an stft stft.performStft(data) # Process dfts from windowed segments of input dfts = stft.getDFTs() rffts = mat.to_all_real_matlab_format(dfts) d, energy = localizer.get_distribution_real( rffts[:, :, 0], 'gcc') # Use first hop post = localizer.get_distribution(rffts[:, :, 0]) w = np.asarray(post.weights) ps = np.asarray(post.particles) ps[:, 1] = np.abs(ps[:, 1]) # Ensure remain positive estimate = w.dot(ps) #if energy < 1000: # continue # Do beam forming if DO_BEAMFORM: align_mat = align_mats[:, :, ind] filtered = beamformer.filter_real(rffts, align_mat) mat.set_dfts_real(dfts, filtered, n_channels=2) # Take care of plotting if count % 1 == 0: if PLOT_PARTICLES: #plot_particles(particle_plots, estimate_plot, ps, w, estimate) plot_particles(particle_plots2, estimate_plot2, ps2, w2, estimate2) #plot_particles(particle_plots3, estimate_plot3, ps3, w3, estimate3) dist = localizer.to_spher_grid(d) dist /= (np.max(dist) + consts.EPS) lhood_plot.set_ydata(dist) plt.draw() if listener.savefig(): plot_manager.savefig(fig) if PLOT_POLAR or PLOT_CARTES: dist = d #dist -= np.min(dist) dist = localizer.to_spher_grid(dist) post = localizer.to_spher_grid(post) * 50 #dist /= np.max(dist) if np.max(dist) > 1: dist /= np.max(dist) if np.max(post) > 1: post /= np.max(post) pol_plot.set_ydata(dist[0, :]) post_plot.set_ydata(post[0, :]) if DO_BEAMFORM: # Get beam plot freq = 1900. # Hz response = beamformer.get_beam( align_mat, align_mats, rffts, freq) response = localizer.to_spher_grid(response) if np.max(response) > 1: response /= np.max(response) pol_beam_plot.set_ydata(response[-1, :]) plt.draw() if PLOT_2D: dist = localizer.to_spher_grid(d) noisy = THETA_SPACE[np.argmax(dist)] theta_parts = np.arctan2(ps[:, 1], ps[:, 0]) estimate = w.dot(ps) estimate = np.arctan2(estimate[1], estimate[0]) particle_plot.update(dist, theta_parts, w, [noisy, estimate]) if listener.savefig(): plot_manager.savefig(particle_plot.get_figure()) if VIDEO_OVERLAY: _, cvimage = vc.read() overlay_particles(video_handle, vid_part_plots, vid_estim_plot, \ cvimage, ps, w, estimate) plt.draw() if SAVE_FRAMES: fig.canvas.print_rgba('out/out' + str(count) + '.mat') count += 1 # Get the istft of the processed data if PLAY_AUDIO or RECORD_AUDIO: new_data = stft.performIStft() new_data = out_buf.reduce_channels(new_data, NUM_CHANNELS_IN, NUM_CHANNELS_OUT) # Write out the new, altered data if PLAY_AUDIO: if out_buf.get_available_write() >= WINDOW_LENGTH: out_buf.write_samples(new_data) if RECORD_AUDIO: if record_buf.get_available_write() >= WINDOW_LENGTH: record_buf.write_samples(new_data) except KeyboardInterrupt: print "Program interrupted" listener.set_quit(True) print "Cleaning up" in_stream.stop_stream() in_stream.close() out_stream.stop_stream() out_stream.close() pa.terminate() # Take care of output file if RECORD_AUDIO: print "Writing output file" make_wav() print "Done"