コード例 #1
0
elif dec_name == 'quadratic':
    feat_calc = soil.QuadraticSurfaceCalculator(
        2,
        np.array([X[:, 0].min(), X[:, 0].max(), X[:, 1].min(), X[:, 1].max()],
                 dtype='float32'),
        random_seed=rs)
cls = []
lm = []
for i in range(n_trees):
    cls.append(
        soil.ThresholdDecider(
            feat_sel_prov, feat_calc,
            soil.RandomizedClassificationThresholdOptimizer(
                suggestions,
                n_classes,
                soil.EntropyGain(soil.ShannonEntropy()),
                random_seed=rs)))
    lm.append(soil.ClassificationLeafManager(n_classes))
forest = soil.Forest(depth, 1, 2, n_trees, cls, lm,
                     soil.ClassicTraining(soil.NoBagging()))
forest.fit(X, Y)

if INTERACTIVE:
    plt.figure()
    point_prob_plot(forest, X, Y, plotx, ploty)
    plt.title('Random Forest $(T=%d, D=%d, |\Theta_j|=%d)$' %
              (n_trees, depth, suggestions * 2))
    plt.savefig('spiral_rf.png')
    plt.show()
assert accuracy_score(Y, np.argmax(forest.predict(X), axis=1)) > 0.95
コード例 #2
0
ファイル: custom.py プロジェクト: caomw/fertilized-forests
n_trees = 200
# These variables will contain the classifiers and leaf managers for each tree.
cls = []
lm = []
for i in range(n_trees):
  # Classifier:
  cls.append(soil.ThresholdDecider(
               soil.StandardFeatureSelectionProvider(1, 2, 2, 2, random_seed=1+i),
               soil.LinearSurfaceCalculator(400, random_seed=1+i),
               soil.RandomizedClassificationThresholdOptimizer(
                 True,
                 2,
                 soil.EntropyGain(soil.ShannonEntropy()), random_seed=1+i)))
  # Leaf manager:
  lm.append(soil.ClassificationLeafManager(2))

forest = soil.Forest(depth,
                     1,
                     2,
                     n_trees,
                     cls,
                     lm,
                     soil.ClassicTraining(soil.NoBagging()))
forest.fit(X, Y)
assert accuracy_score(Y, np.argmax(forest.predict(X), axis=1)) > 0.95
if INTERACTIVE:
  plt.figure()
  point_prob_plot(forest, X, Y, plotx, ploty)
  plt.savefig('custom.png')
  plt.show()