コード例 #1
0
ファイル: plca.py プロジェクト: pkmital/BregmanToolkit
 def plot(cls, V, W, Z, H, curriter=-1):
     WZH = cls.reconstruct(W, Z, H)
     plottools.plotall([V, WZH], subplot=(3, 1), align='xy', cmap=plt.cm.hot)
     plottools.plotall(
         9 * [None] + [W, Z, H],
         subplot=(4, 3),
         clf=False,
         align='',
         cmap=plt.cm.hot,
         colorbar=False)
     plt.draw()
コード例 #2
0
ファイル: plca.py プロジェクト: music-apps/InfiniteListener
 def plot(cls, V, W, Z, H, curriter=-1):
     WZH = cls.reconstruct(W, Z, H)
     plottools.plotall([V, WZH],
                       subplot=(3, 1),
                       align='xy',
                       cmap=plt.cm.hot)
     plottools.plotall(9 * [None] + [W, Z, H],
                       subplot=(4, 3),
                       clf=False,
                       align='',
                       cmap=plt.cm.hot,
                       colorbar=False)
     plt.draw()
コード例 #3
0
    def plot(self, V, W, Z, H, curriter=-1):
        rank = len(Z)
        nrows = rank + 2
        WZH = self.reconstruct(W, Z, H, circular=self.circular)
        plottools.plotall([V, WZH] + [self.reconstruct(W[:,z,:], Z[z], H[z,:],
                                                       circular=self.circular)
                                      for z in xrange(len(Z))], 
                          title=['V (Iteration %d)' % curriter,
                                 'Reconstruction'] +
                          ['Basis %d reconstruction' % x
                           for x in xrange(len(Z))],
                          colorbar=False, grid=False, cmap=plt.cm.hot,
                          subplot=(nrows, 2), order='c', align='xy')
        plottools.plotall([None] + [Z], subplot=(nrows, 2), clf=False,
                          plotfun=lambda x: plt.bar(np.arange(len(x)) - 0.4, x),
                          xticks=[[], range(rank)], grid=False,
                          colorbar=False, title='Z')

        plots = [None] * (3*nrows + 2)
        titles = plots + ['W%d' % x for x in range(rank)]
        wxticks = [[]] * (3*nrows + rank + 1) + [range(0, W.shape[2], 10)]
        plots.extend(W.transpose((1, 0, 2)))
        plottools.plotall(plots, subplot=(nrows, 6), clf=False, order='c',
                          align='xy', cmap=plt.cm.hot, colorbar=False, 
                          ylabel=r'$\parallel$', grid=False,
                          title=titles, yticks=[[]], xticks=wxticks)
        
        plots = [None] * (2*nrows + 2)
        titles=plots + ['H%d' % x for x in range(rank)]
        if np.squeeze(H).ndim < 4:
            plotH = np.squeeze(H)
        else:
            plotH = H.sum(2)
        if rank == 1:
            plotH = [plotH]
        plots.extend(plotH)
        plottools.plotall(plots, subplot=(nrows, 3), order='c', align='xy',
                          grid=False, clf=False, title=titles, yticks=[[]],
                          colorbar=False, cmap=plt.cm.hot, ylabel=r'$*$',
                          xticks=[[]]*(3*nrows-1) + [range(0, V.shape[1], 100)])
        plt.draw()
コード例 #4
0
if __name__ == '__main__':

    btchroma145 = sio.loadmat(
        '/home/thierry/Columbia/covers80/coversongs/covers32k/Caroline_No/beach_boys+Pet_Sounds+13-Caroline_No.mp3.mat'
    )['btchroma']
    mask, masked_cols = masking.random_col_mask(btchroma145, ncols=1, win=30)
    recon, lt = imputation.lintransform_cols(btchroma145,
                                             mask,
                                             masked_cols,
                                             win=1)
    pos1 = masked_cols[0] - 7
    pos2 = masked_cols[0] + 7
    im1 = btchroma145[:, pos1:pos2].copy()
    im2 = (btchroma145 * mask)[:, pos1:pos2].copy()
    im3 = recon[:, pos1:pos2].copy()
    # plot all this
    fig = P.figure()
    fig.subplots_adjust(hspace=0.4)
    blackbarsfun = lambda: P.gca().axvline(linewidth=2, color='0.', x=6.5
                                           ) and P.gca().axvline(
                                               linewidth=2, color='0.', x=7.5)
    plotall([im1, im2, im3],
            subplot=(3, 1),
            cmap='gray_r',
            title=['original', 'original masked', 'reconstruction'],
            axvlines=blackbarsfun,
            colorbar=False,
            xticks=[()] * 3)
    P.show()
コード例 #5
0
def compare_all(btchroma, mask, masked_cols, codebook=None):
    """
    Compare all the algorithms we have so far.
    A lot of parameters hard-coded, but...
    It will get improved.
    We display:
      1) original beat chromagram
      2) masked beat chromagram
      3) imputation by random
      4) imputation by averaging nearby columns
      5) imputation by knn on the rest of the song
      6) imputation by linear prediction
      7) imputation by NMF
      8) imputation by codebook, if provided

    To init mask and masked_cols, something like:
    mask,masked_cols = masking.random_col_mask(btchroma,ncols=1,win=30)
    """
    # for displaying purposes, display window size 50
    pos1 = masked_cols[0] - 5
    pos2 = masked_cols[0] + 5
    allimages = []
    titles = []
    xlabels = []
    # original beat chroma and masked one
    im1 = btchroma[:, pos1:pos2].copy()
    im2 = (btchroma * mask)[:, pos1:pos2].copy()
    allimages.append(im1)
    titles.append('original beat chroma')
    xlabels.append('')
    allimages.append(im2)
    titles.append('masked beat chroma')
    xlabels.append('')
    # 3) random
    recon = IMPUTATION.random_col(btchroma, mask, masked_cols)
    im3_err = EVAL.recon_error(btchroma, mask, recon, measure='eucl')
    im3 = recon[:, pos1:pos2].copy()
    allimages.append(im3)
    titles.append('random')
    xlabels.append('err=' + str(im3_err))
    # 4) average nearby columns
    recon = IMPUTATION.average_col(btchroma, mask, masked_cols, win=3)
    im4_err = EVAL.recon_error(btchroma, mask, recon, measure='eucl')
    im4 = recon[:, pos1:pos2].copy()
    allimages.append(im4)
    titles.append('average 2 nearby cols')
    xlabels.append('err=' + str(im4_err))
    # 5) knn
    recon, used_cols = IMPUTATION.eucldist_cols(btchroma,
                                                mask,
                                                masked_cols,
                                                win=7)
    im5_err = EVAL.recon_error(btchroma, mask, recon, measure='eucl')
    im5 = recon[:, pos1:pos2].copy()
    allimages.append(im5)
    titles.append('knn for the whole song')
    xlabels.append('err=' + str(im5_err))
    # 6) linear prediction
    recon, proj = IMPUTATION.lintransform_cols(btchroma,
                                               mask,
                                               masked_cols,
                                               win=1)
    im6_err = EVAL.recon_error(btchroma, mask, recon, measure='eucl')
    im6 = recon[:, pos1:pos2].copy()
    allimages.append(im6)
    titles.append('linear prediction (1 col)')
    xlabels.append('err=' + str(im6_err))
    # 7) SIPLCA
    res = IMPUTATION_PLCA.SIPLCA_mask.analyze((btchroma * mask).copy(),
                                              4,
                                              mask,
                                              win=5)
    W, Z, H, norm, recon, logprob = res
    im7_err = EVAL.recon_error(btchroma, mask, recon, measure='eucl')
    im7 = recon[:, pos1:pos2].copy()
    allimages.append(im7)
    titles.append('SIPLCA, rank=4, win=5')
    xlabels.append('err=' + str(im7_err))
    # 7) SIPLCA 2
    res = IMPUTATION_PLCA.SIPLCA_mask.analyze((btchroma * mask).copy(),
                                              25,
                                              mask,
                                              win=10)
    W, Z, H, norm, recon, logprob = res
    im7_err_bis = EVAL.recon_error(btchroma, mask, recon, measure='eucl')
    im7_bis = recon[:, pos1:pos2].copy()
    allimages.append(im7_bis)
    titles.append('SIPLCA, rank=25, win=10')
    xlabels.append('err=' + str(im7_err_bis))
    # 8) codebook
    if codebook != None:
        cb = [p.reshape(12, p.size / 12) for p in codebook]
        recon, used_codes = IMPUTATION.codebook_cols(btchroma, mask,
                                                     masked_cols, cb)
        im8_err = EVAL.recon_error(btchroma, mask, recon, measure='eucl')
        im8 = recon[:, pos1:pos2].copy()
        allimages.append(im8)
        titles.append('codebook, ' + str(codebook.shape[0]) +
                      ' codes of length ' + str(codebook.shape[1] / 12))
        xlabels.append('err=' + str(im8_err))
    # ALL IMAGES CREATED
    fig = plt.figure()
    fig.subplots_adjust(hspace=0.4)
    blackbarsfun = lambda: plt.gca().axvline(
        linewidth=2, color='0.', x=4.5) and plt.gca().axvline(
            linewidth=2, color='0.', x=5.5)
    # plotall
    plotall(allimages,
            subplot=(3, 3),
            cmap='gray_r',
            title=titles,
            xlabel=xlabels,
            axvlines=blackbarsfun,
            colorbar=False)
コード例 #6
0
def plot_oneexample(btchroma,
                    mask,
                    p1,
                    p2,
                    methods=(),
                    methods_args=None,
                    measures=(),
                    subplot=None,
                    plotrange=None,
                    **kwargs):
    """
    Utility function to plot the result of many methods on one example.
    Methods and arguments are the same as when we test on a whole dataset.
    First two plots are always original then original*mask.
    INPUT
      btchroma     - btchroma
      mask         - binary mask, 0 = hidden
      p1           - first masked column
      p2           - last masekdcolumn + 1
      methods      - list of methods (lintrans,random,....)
      bethods_args - list of dictionary containing arguments
      measures     - list of measures, put in title (we sort according to first)
      subplot      - if None, images in one column
      plotrange    - if we dont want to plot everything set to (pos1,pos2)
      kwargs       - extra arguments passed to plotall
    """
    from plottools import plotall
    # inits and sanity checks
    for meas in measures:
        assert meas in ('eucl', 'kl', 'cos', 'dent', 'lhalf', 'ddiff', 'jdiff',
                        'thresh', 'leven',
                        'condent'), 'unknown measure: ' + meas
    nmethods = len(methods)
    assert nmethods > 0, 'we need at least one method...!'
    if methods_args is None:
        methods_args = [{}] * len(methods)
    if subplot is None:
        subplot = (nmethods + 2, 1)
    assert np.zeros(subplot).size == len(
        methods) + 2, 'wrong subplot, forgot original and masked original?'
    if plotrange is None:
        plotrange = (0, btchroma.shape[1])
    # impute
    errs = []
    recons = []
    ########## ALGORITHM DEPENDENT
    for im, method in enumerate(methods):
        if method == 'random':
            recon = IMPUTATION.random_patch(btchroma, mask, p1, p2,
                                            **methods_args[im])
        elif method == 'randomfromsong':
            recon = IMPUTATION.random_patch_from_song(btchroma, mask, p1, p2,
                                                      **methods_args[im])
        elif method == 'average':
            recon = IMPUTATION.average_patch(btchroma, mask, p1, p2,
                                             **methods_args[im])
        elif method == 'averageall':
            recon = IMPUTATION.average_patch_all(btchroma, mask, p1, p2,
                                                 **methods_args[im])
        elif method == 'codebook':
            recon, used_codes = IMPUTATION.codebook_patch(
                btchroma, mask, p1, p2, **methods_args[im])
        elif method == 'knn_eucl':
            recon, used_cols = IMPUTATION.knn_patch(btchroma,
                                                    mask,
                                                    p1,
                                                    p2,
                                                    measure='eucl',
                                                    **methods_args[im])
        elif method == 'knn_kl':
            recon, used_cols = IMPUTATION.knn_patch(btchroma,
                                                    mask,
                                                    p1,
                                                    p2,
                                                    measure='kl',
                                                    **methods_args[im])
        elif method == 'lintrans':
            recon, proj = IMPUTATION.lintransform_patch(
                btchroma, mask, p1, p2, **methods_args[im])
        elif method == 'kalman':
            import kalman_toolbox as KALMAN
            recon = KALMAN.imputation(btchroma, p1, p2, **methods_args[im])
        elif method == 'hmm':
            recon, recon2, hmm = IMPUTATION_HMM.imputation(
                btchroma * mask, p1, p2, **methods_args[im])
        elif method == 'siplca':
            rank = methods_args[im]['rank']
            res = IMPUTATION_PLCA.SIPLCA_mask.analyze((btchroma * mask).copy(),
                                                      rank,
                                                      mask,
                                                      convergence_thresh=1e-15,
                                                      **methods_args[im])
            W, Z, H, norm, recon, logprob = res
        elif method == 'siplca2':
            rank = methods_args[im]['rank']
            res = IMPUTATION_PLCA.SIPLCA2_mask.analyze(
                (btchroma * mask).copy(),
                rank,
                mask,
                convergence_thresh=1e-15,
                **methods_args[im])
            W, Z, H, norm, recon, logprob = res
        else:
            print 'unknown method:', method
            return
        # compute errors
        recons.append(recon.copy())
        errs.append(recon_error(btchroma, mask, recon, 'all'))
    # all methods computed
    # now we sort the results according to first measure
    main_errs = map(lambda x: x[measures[0]], errs)
    order = np.array(np.argsort(main_errs))
    methods = map(lambda i: methods[i], order)
    errs = map(lambda i: errs[i], order)
    recons = map(lambda i: recons[i], order)
    # plot
    import pylab as P
    P.figure()
    pos1 = plotrange[0]
    pos2 = plotrange[1]
    ims = [btchroma[:, pos1:pos2], (btchroma * mask)[:, pos1:pos2]]
    ims.extend(map(lambda r: r[:, pos1:pos2], recons))
    titles = ['original', 'original masked']
    for imethod, method in enumerate(methods):
        t = method + ':'
        for m in measures:
            t += ' ' + m + '=' + nice_nums(errs[imethod][m])
        titles.append(t)
    plotall(ims, subplot=subplot, title=titles, cmap='gray_r', colorbar=False)
    P.show()
コード例 #7
0
def plot_oneexample(btchroma,mask,p1,p2,methods=(),methods_args=None,
                    measures=(),subplot=None,plotrange=None,**kwargs):
    """
    Utility function to plot the result of many methods on one example.
    Methods and arguments are the same as when we test on a whole dataset.
    First two plots are always original then original*mask.
    INPUT
      btchroma     - btchroma
      mask         - binary mask, 0 = hidden
      p1           - first masked column
      p2           - last masekdcolumn + 1
      methods      - list of methods (lintrans,random,....)
      bethods_args - list of dictionary containing arguments
      measures     - list of measures, put in title (we sort according to first)
      subplot      - if None, images in one column
      plotrange    - if we dont want to plot everything set to (pos1,pos2)
      kwargs       - extra arguments passed to plotall
    """
    from plottools import plotall
    # inits and sanity checks
    for meas in measures:
        assert meas in ('eucl','kl','cos','dent','lhalf','ddiff','jdiff',
                        'thresh','leven','condent'),'unknown measure: '+meas
    nmethods = len(methods)
    assert nmethods > 0,'we need at least one method...!'
    if methods_args is None:
        methods_args = [{}]*len(methods)
    if subplot is None:
        subplot = (nmethods+2,1)
    assert np.zeros(subplot).size == len(methods)+2,'wrong subplot, forgot original and masked original?'
    if plotrange is None:
        plotrange = (0,btchroma.shape[1])
    # impute
    errs = []
    recons = []
    ########## ALGORITHM DEPENDENT
    for im,method in enumerate(methods):
        if method == 'random':
            recon = IMPUTATION.random_patch(btchroma,mask,p1,p2,**methods_args[im])
        elif method == 'randomfromsong':
            recon = IMPUTATION.random_patch_from_song(btchroma,mask,p1,p2,**methods_args[im])
        elif method == 'average':
            recon = IMPUTATION.average_patch(btchroma,mask,p1,p2,**methods_args[im])
        elif method == 'averageall':
            recon = IMPUTATION.average_patch_all(btchroma,mask,p1,p2,**methods_args[im])
        elif method == 'codebook':
            recon,used_codes = IMPUTATION.codebook_patch(btchroma,mask,p1,p2,**methods_args[im])
        elif method == 'knn_eucl':
            recon,used_cols = IMPUTATION.knn_patch(btchroma,mask,p1,p2,measure='eucl',**methods_args[im])
        elif method == 'knn_kl':
            recon,used_cols = IMPUTATION.knn_patch(btchroma,mask,p1,p2,measure='kl',**methods_args[im])
        elif method == 'lintrans':
            recon,proj = IMPUTATION.lintransform_patch(btchroma,mask,p1,p2,**methods_args[im])
        elif method == 'kalman':
            import kalman_toolbox as KALMAN
            recon = KALMAN.imputation(btchroma,p1,p2,**methods_args[im])
        elif method == 'hmm':
            recon,recon2,hmm = IMPUTATION_HMM.imputation(btchroma*mask,p1,p2,
                                                         **methods_args[im])
        elif method == 'siplca':
            rank = methods_args[im]['rank']
            res = IMPUTATION_PLCA.SIPLCA_mask.analyze((btchroma*mask).copy(),
                                                      rank,mask,
                                                      convergence_thresh=1e-15,
                                                      **methods_args[im])
            W, Z, H, norm, recon, logprob = res
        elif method == 'siplca2':
            rank = methods_args[im]['rank']
            res = IMPUTATION_PLCA.SIPLCA2_mask.analyze((btchroma*mask).copy(),
                                                       rank,mask,
                                                       convergence_thresh=1e-15,
                                                       **methods_args[im])
            W, Z, H, norm, recon, logprob = res
        else:
            print 'unknown method:',method
            return
        # compute errors
        recons.append( recon.copy() )
        errs.append( recon_error(btchroma,mask,recon,'all') )
    # all methods computed
    # now we sort the results according to first measure
    main_errs = map(lambda x: x[measures[0]], errs)
    order = np.array(np.argsort(main_errs))
    methods = map(lambda i: methods[i], order)
    errs = map(lambda i: errs[i], order)
    recons = map(lambda i: recons[i], order)
    # plot
    import pylab as P
    P.figure()
    pos1 = plotrange[0]
    pos2 = plotrange[1]
    ims = [btchroma[:,pos1:pos2],(btchroma*mask)[:,pos1:pos2]]
    ims.extend( map(lambda r: r[:,pos1:pos2], recons) )
    titles = ['original', 'original masked']
    for imethod,method in enumerate(methods):
        t = method + ':'
        for m in measures:
            t += ' ' + m + '=' + nice_nums(errs[imethod][m])
        titles.append(t)
    plotall(ims,subplot=subplot,title=titles,cmap='gray_r',colorbar=False)
    P.show()
コード例 #8
0
import numpy as np
import scipy.io as sio
from plottools import plotall
import pylab as P

sys.path.append('../PythonSrc')
import evaluation
import masking
import imputation


if __name__ == '__main__':

    
    btchroma145 = sio.loadmat('/home/thierry/Columbia/covers80/coversongs/covers32k/Caroline_No/beach_boys+Pet_Sounds+13-Caroline_No.mp3.mat')['btchroma']
    mask,masked_cols = masking.random_col_mask(btchroma145,ncols=1,win=30)
    recon,lt = imputation.lintransform_cols(btchroma145,mask,masked_cols,win=1)
    pos1 = masked_cols[0] - 7
    pos2 = masked_cols[0] + 7
    im1 = btchroma145[:,pos1:pos2].copy()
    im2 = (btchroma145 * mask)[:,pos1:pos2].copy()
    im3 = recon[:,pos1:pos2].copy()
    # plot all this
    fig = P.figure()
    fig.subplots_adjust(hspace=0.4)
    blackbarsfun = lambda: P.gca().axvline(linewidth=2,color='0.',x=6.5) and P.gca().axvline(linewidth=2,color='0.',x=7.5)
    plotall([im1,im2,im3],subplot=(3,1),cmap='gray_r',
            title=['original','original masked','reconstruction'],
            axvlines=blackbarsfun,colorbar=False,xticks=[()]*3)
    P.show()
コード例 #9
0
def compare_all(btchroma,mask,masked_cols,codebook=None):
    """
    Compare all the algorithms we have so far.
    A lot of parameters hard-coded, but...
    It will get improved.
    We display:
      1) original beat chromagram
      2) masked beat chromagram
      3) imputation by random
      4) imputation by averaging nearby columns
      5) imputation by knn on the rest of the song
      6) imputation by linear prediction
      7) imputation by NMF
      8) imputation by codebook, if provided

    To init mask and masked_cols, something like:
    mask,masked_cols = masking.random_col_mask(btchroma,ncols=1,win=30)
    """
    # for displaying purposes, display window size 50
    pos1 = masked_cols[0] - 5
    pos2 = masked_cols[0] + 5
    allimages = []
    titles = []
    xlabels = []
    # original beat chroma and masked one
    im1 = btchroma[:,pos1:pos2].copy()
    im2 = (btchroma * mask)[:,pos1:pos2].copy()
    allimages.append(im1)
    titles.append('original beat chroma')
    xlabels.append('')
    allimages.append(im2)
    titles.append('masked beat chroma')
    xlabels.append('')
    # 3) random
    recon = IMPUTATION.random_col(btchroma,mask,masked_cols)
    im3_err = EVAL.recon_error(btchroma,mask,recon,measure='eucl')
    im3 = recon[:,pos1:pos2].copy()
    allimages.append(im3)
    titles.append('random')
    xlabels.append('err='+str(im3_err))
    # 4) average nearby columns
    recon = IMPUTATION.average_col(btchroma,mask,masked_cols,win=3)
    im4_err = EVAL.recon_error(btchroma,mask,recon,measure='eucl')
    im4 = recon[:,pos1:pos2].copy()
    allimages.append(im4)
    titles.append('average 2 nearby cols')
    xlabels.append('err='+str(im4_err))
    # 5) knn
    recon,used_cols = IMPUTATION.eucldist_cols(btchroma,mask,masked_cols,win=7)
    im5_err = EVAL.recon_error(btchroma,mask,recon,measure='eucl')
    im5 = recon[:,pos1:pos2].copy()
    allimages.append(im5)
    titles.append('knn for the whole song')
    xlabels.append('err='+str(im5_err))
    # 6) linear prediction
    recon,proj = IMPUTATION.lintransform_cols(btchroma,mask,masked_cols,win=1)
    im6_err = EVAL.recon_error(btchroma,mask,recon,measure='eucl')
    im6 = recon[:,pos1:pos2].copy()
    allimages.append(im6)
    titles.append('linear prediction (1 col)')
    xlabels.append('err='+str(im6_err))
    # 7) SIPLCA
    res = IMPUTATION_PLCA.SIPLCA_mask.analyze((btchroma*mask).copy(),
                                              4,mask,win=5)
    W, Z, H, norm, recon, logprob = res
    im7_err = EVAL.recon_error(btchroma,mask,recon,measure='eucl')
    im7 = recon[:,pos1:pos2].copy()
    allimages.append(im7)
    titles.append('SIPLCA, rank=4, win=5')
    xlabels.append('err='+str(im7_err))
    # 7) SIPLCA 2
    res = IMPUTATION_PLCA.SIPLCA_mask.analyze((btchroma*mask).copy(),
                                              25,mask,win=10)
    W, Z, H, norm, recon, logprob = res
    im7_err_bis = EVAL.recon_error(btchroma,mask,recon,measure='eucl')
    im7_bis = recon[:,pos1:pos2].copy()
    allimages.append(im7_bis)
    titles.append('SIPLCA, rank=25, win=10')
    xlabels.append('err='+str(im7_err_bis))
    # 8) codebook
    if codebook != None:
        cb = [p.reshape(12,p.size/12) for p in codebook]
        recon,used_codes = IMPUTATION.codebook_cols(btchroma,mask,masked_cols,cb)
        im8_err = EVAL.recon_error(btchroma,mask,recon,measure='eucl')
        im8 = recon[:,pos1:pos2].copy()
        allimages.append(im8)
        titles.append('codebook, '+str(codebook.shape[0])+' codes of length '+str(codebook.shape[1]/12))
        xlabels.append('err='+str(im8_err))
    # ALL IMAGES CREATED
    fig = plt.figure()
    fig.subplots_adjust(hspace=0.4)
    blackbarsfun = lambda: plt.gca().axvline(linewidth=2,color='0.',x=4.5) and plt.gca().axvline(linewidth=2,color='0.',x=5.5)
    # plotall
    plotall(allimages,subplot=(3,3),cmap='gray_r',title=titles,xlabel=xlabels,axvlines=blackbarsfun,colorbar=False)