コード例 #1
0
    def get_grid_line_collection(self, **kwargs):
        """
        Get a LineCollection of the grid

        """
        from matplotlib.collections import LineCollection
        xmin = self.xedge[0]
        xmax = self.xedge[-1]
        ymin = self.yedge[-1]
        ymax = self.yedge[0]
        linecol = []
        # Vertical lines
        for j in xrange(self.dis.ncol + 1):
            x0 = self.xedge[j]
            x1 = x0
            y0 = ymin
            y1 = ymax
            x0r, y0r = rotate(x0, y0, self.rotation, 0, self.yedge[0])
            x0r += self.xul
            y0r += self.yul - self.yedge[0]
            x1r, y1r = rotate(x1, y1, self.rotation, 0, self.yedge[0])
            x1r += self.xul
            y1r += self.yul - self.yedge[0]
            linecol.append(((x0r, y0r), (x1r, y1r)))

        #horizontal lines
        for i in xrange(self.dis.nrow + 1):
            x0 = xmin
            x1 = xmax
            y0 = self.yedge[i]
            y1 = y0
            x0r, y0r = rotate(x0, y0, self.rotation, 0, self.yedge[0])
            x0r += self.xul
            y0r += self.yul - self.yedge[0]
            x1r, y1r = rotate(x1, y1, self.rotation, 0, self.yedge[0])
            x1r += self.xul
            y1r += self.yul - self.yedge[0]
            linecol.append(((x0r, y0r), (x1r, y1r)))

        lc = LineCollection(linecol, **kwargs)
        return lc
コード例 #2
0
ファイル: map.py プロジェクト: arkottke/flopy
    def get_grid_line_collection(self, **kwargs):
        """
        Get a LineCollection of the grid

        """
        from matplotlib.collections import LineCollection
        xmin = self.xedge[0]
        xmax = self.xedge[-1]
        ymin = self.yedge[-1]
        ymax = self.yedge[0]
        linecol = []
        # Vertical lines
        for j in xrange(self.dis.ncol + 1):
            x0 = self.xedge[j]
            x1 = x0
            y0 = ymin
            y1 = ymax
            x0r, y0r = rotate(x0, y0, self.rotation, 0, self.yedge[0])
            x0r += self.xul
            y0r += self.yul - self.yedge[0]
            x1r, y1r = rotate(x1, y1, self.rotation, 0, self.yedge[0])
            x1r += self.xul
            y1r += self.yul - self.yedge[0]
            linecol.append(((x0r, y0r), (x1r, y1r)))

        #horizontal lines
        for i in xrange(self.dis.nrow + 1):
            x0 = xmin
            x1 = xmax
            y0 = self.yedge[i]
            y1 = y0
            x0r, y0r = rotate(x0, y0, self.rotation, 0, self.yedge[0])
            x0r += self.xul
            y0r += self.yul - self.yedge[0]
            x1r, y1r = rotate(x1, y1, self.rotation, 0, self.yedge[0])
            x1r += self.xul
            y1r += self.yul - self.yedge[0]
            linecol.append(((x0r, y0r), (x1r, y1r)))

        lc = LineCollection(linecol, **kwargs)
        return lc
コード例 #3
0
ファイル: map.py プロジェクト: arkottke/flopy
    def get_extent(self):
        """
        Get the extent of the rotated and offset grid

        Return (xmin, xmax, ymin, ymax)

        """
        x0 = self.xedge[0]
        x1 = self.xedge[-1]
        y0 = self.yedge[0]
        y1 = self.yedge[-1]

        # upper left point
        x0r, y0r = rotate(x0, y0, self.rotation, 0, self.yedge[0])
        x0r += self.xul
        y0r += self.yul - self.yedge[0]

        # upper right point
        x1r, y1r = rotate(x1, y0, self.rotation, 0, self.yedge[0])
        x1r += self.xul
        y1r += self.yul - self.yedge[0]

        # lower right point
        x2r, y2r = rotate(x1, y1, self.rotation, 0, self.yedge[0])
        x2r += self.xul
        y2r += self.yul - self.yedge[0]

        # lower left point
        x3r, y3r = rotate(x0, y1, self.rotation, 0, self.yedge[0])
        x3r += self.xul
        y3r += self.yul - self.yedge[0]

        xmin = min(x0r, x1r, x2r, x3r)
        xmax = max(x0r, x1r, x2r, x3r)
        ymin = min(y0r, y1r, y2r, y3r)
        ymax = max(y0r, y1r, y2r, y3r)

        return (xmin, xmax, ymin, ymax)
コード例 #4
0
    def get_extent(self):
        """
        Get the extent of the rotated and offset grid

        Return (xmin, xmax, ymin, ymax)

        """
        x0 = self.xedge[0]
        x1 = self.xedge[-1]
        y0 = self.yedge[0]
        y1 = self.yedge[-1]

        # upper left point
        x0r, y0r = rotate(x0, y0, self.rotation, 0, self.yedge[0])
        x0r += self.xul
        y0r += self.yul - self.yedge[0]

        # upper right point
        x1r, y1r = rotate(x1, y0, self.rotation, 0, self.yedge[0])
        x1r += self.xul
        y1r += self.yul - self.yedge[0]

        # lower right point
        x2r, y2r = rotate(x1, y1, self.rotation, 0, self.yedge[0])
        x2r += self.xul
        y2r += self.yul - self.yedge[0]

        # lower left point
        x3r, y3r = rotate(x0, y1, self.rotation, 0, self.yedge[0])
        x3r += self.xul
        y3r += self.yul - self.yedge[0]

        xmin = min(x0r, x1r, x2r, x3r)
        xmax = max(x0r, x1r, x2r, x3r)
        ymin = min(y0r, y1r, y2r, y3r)
        ymax = max(y0r, y1r, y2r, y3r)

        return (xmin, xmax, ymin, ymax)
コード例 #5
0
ファイル: map.py プロジェクト: arkottke/flopy
    def plot_discharge(self, frf, fff, flf=None, head=None, istep=1, jstep=1,
                       **kwargs):
        """
        Use quiver to plot vectors.

        Parameters
        ----------
        frf : numpy.ndarray
            MODFLOW's 'flow right face'
        fff : numpy.ndarray
            MODFLOW's 'flow front face'
        flf : numpy.ndarray
            MODFLOW's 'flow lower face' (Default is None.)
        head : numpy.ndarray
            MODFLOW's head array.  If not provided, then will assume confined
            conditions in order to calculated saturated thickness.
        istep : int
            row frequency to plot. (Default is 1.)
        jstep : int
            column frequency to plot. (Default is 1.)
        kwargs : dictionary
            Keyword arguments passed to plt.quiver()

        Returns
        -------
        quiver : matplotlib.pyplot.quiver
            Vectors of specific discharge.

        """

        # Calculate specific discharge
        delr = self.dis.delr.array
        delc = self.dis.delc.array
        top = self.dis.top.array
        botm = self.dis.botm.array
        nlay, nrow, ncol = botm.shape
        laytyp = None
        hnoflo = 999.
        hdry = 999.
        if self.ml is not None:
            lpf = self.ml.get_package('LPF')
            if lpf is not None:
                laytyp = lpf.laytyp.array
                hdry = lpf.hdry
            bas = self.ml.get_package('BAS6')
            if bas is not None:
                hnoflo = bas.hnoflo

        # If no access to head or laytyp, then calculate confined saturated
        # thickness by setting laytyp to zeros
        if head is None or laytyp is None:
            head = np.zeros(botm.shape, np.float32)
            laytyp = np.zeros((nlay), dtype=np.int)
        sat_thk = plotutil.saturated_thickness(head, top, botm, laytyp,
                                               [hnoflo, hdry])

        # Calculate specific discharge
        qx, qy, qz = plotutil.centered_specific_discharge(frf, fff, flf, delr,
                                                          delc, sat_thk)

        # Select correct slice and step
        x = self.xcentergrid[::istep, ::jstep]
        y = self.ycentergrid[::istep, ::jstep]
        u = qx[self.layer, :, :]
        v = qy[self.layer, :, :]
        u = u[::istep, ::jstep]
        v = v[::istep, ::jstep]

        # Rotate and plot
        urot, vrot = rotate(u, v, self.rotation)
        quiver = self.ax.quiver(x, y, urot, vrot, **kwargs)

        return quiver
コード例 #6
0
ファイル: map.py プロジェクト: arkottke/flopy
    def __init__(self, ax=None, model=None, dis=None, layer=0, xul=None,
                 yul=None, rotation=0., extent=None):
        self.ml = model
        self.layer = layer
        if dis is None:
            if model is None:
                raise Exception('Cannot find discretization package')
            else:
                self.dis = model.get_package('DIS')
        else:
            self.dis = dis

        if self.layer < 0 or self.layer > self.dis.nlay - 1:
            s = 'Not a valid layer: {}.  Must be between 0 and {}.'.format(
                self.layer, self.dis.nlay - 1)
            raise Exception(s)

        if ax is None:
            self.ax = plt.gca()
        else:
            self.ax = ax

        # Set origin and rotation
        if xul is None:
            self.xul = 0.
        else:
            self.xul = xul
        if yul is None:
            self.yul = np.add.reduce(self.dis.delc.array)
        else:
            self.yul = yul
        self.rotation = -rotation * np.pi / 180.

        # Create edge arrays and meshgrid for pcolormesh
        self.xedge = self.get_xedge_array()
        self.yedge = self.get_yedge_array()
        self.xgrid, self.ygrid = np.meshgrid(self.xedge, self.yedge)
        self.xgrid, self.ygrid = rotate(self.xgrid, self.ygrid, self.rotation,
                                        0, self.yedge[0])
        self.xgrid += self.xul
        self.ygrid += self.yul - self.yedge[0]

        # Create x and y center arrays and meshgrid of centers
        self.xcenter = self.get_xcenter_array()
        self.ycenter = self.get_ycenter_array()
        self.xcentergrid, self.ycentergrid = np.meshgrid(self.xcenter,
                                                         self.ycenter)
        self.xcentergrid, self.ycentergrid = rotate(self.xcentergrid,
                                                    self.ycentergrid,
                                                    self.rotation,
                                                    0, self.yedge[0])
        self.xcentergrid += self.xul
        self.ycentergrid += self.yul - self.yedge[0]

        # Create model extent
        if extent is None:
            self.extent = self.get_extent()
        else:
            self.extent = extent

        # Set axis limits
        self.ax.set_xlim(self.extent[0], self.extent[1])
        self.ax.set_ylim(self.extent[2], self.extent[3])

        return
コード例 #7
0
ファイル: crosssection.py プロジェクト: arkottke/flopy
    def __init__(self, ax=None, model=None, dis=None, line=None,
                 xul=None, yul=None, rotation=0., extent=None):
        self.model = model
        if dis is None:
            if model is None:
                raise Exception('Cannot find discretization package')
            else:
                self.dis = model.get_package('DIS')
        else:
            self.dis = dis
            
        if line == None:
            s = 'line must be specified.'
            raise Exception(s)
        
        linekeys = [linekeys.lower() for linekeys in line.keys()]
        
        if len(linekeys) < 1:
            s = 'only row, column, or line can be specified in line dictionary.\n'
            s += 'keys specified: '
            for k in linekeys:
                s += '{} '.format(k)
            raise Exception(s)
        
        if 'row' in linekeys and 'column' in linekeys: 
            s = 'row and column cannot both be specified in line dictionary.'
            raise Exception(s)
        
        if 'row' in linekeys and 'line' in linekeys: 
            s = 'row and line cannot both be specified in line dictionary.'
            raise Exception(s)
        
        if 'column' in linekeys and 'line' in linekeys: 
            s = 'column and line cannot both be specified in line dictionary.'
            raise Exception(s)

        if ax is None:
            self.ax = plt.gca()
        else:
            self.ax = ax

        # Set origin and rotation
        if xul is None:
            self.xul = 0.
        else:
            self.xul = xul
        if yul is None:
            self.yul = 0
        else:
            self.yul = yul
        self.rotation = -rotation * np.pi / 180.

        # Create edge arrays and meshgrid for pcolormesh
        self.xedge = self.get_xedge_array()
        self.yedge = self.get_yedge_array()

        # Create x and y center arrays and meshgrid of centers
        self.xcenter = self.get_xcenter_array()
        self.ycenter = self.get_ycenter_array()
                                                         
        onkey = line.keys()[0]                      
        if 'row' in linekeys:
            self.direction = 'x'
            pts = [(self.xedge[0]+0.1, self.ycenter[int(line[onkey])]-0.1), 
                   (self.xedge[-1]-0.1, self.ycenter[int(line[onkey])]+0.1)]
        elif 'column' in linekeys:
            self.direction = 'y'
            pts = [(self.xcenter[int(line[onkey])]+0.1, self.yedge[0]-0.1), 
                   (self.xcenter[int(line[onkey])]-0.1, self.yedge[-1]+0.1)]
        else:
            self.direction = 'xy'
            verts = line[onkey]
            xp = []
            yp = []
            for [v1, v2] in verts:
                xp.append(v1)
                yp.append(v2)
            xp, yp = np.array(xp), np.array(yp)
            # remove offset and rotation from line
            xp -= self.xul
            yp -= self.yul
            xp, yp = rotate(xp, yp, -self.rotation, 0, self.yedge[0])
            pts = []
            for xt, yt in zip(xp, yp):
                pts.append((xt, yt))
        # convert pts list to numpy array
        self.pts = np.array(pts)
            
        # get points along the line
        self.xpts = plotutil.line_intersect_grid(self.pts, self.xedge,
                                                 self.yedge)
        if len(self.xpts) < 2:
            s = 'cross-section cannot be created\n.'
            s += '   less than 2 points intersect the model grid\n'
            s += '   {} points intersect the grid.'.format(len(self.xpts))
            raise Exception(s)           
        
        # set horizontal distance
        d = []
        for v in self.xpts:
            d.append(v[2])
        self.d = np.array(d)

        top = self.dis.top.array
        botm = self.dis.botm.array
        elev = [top.copy()]
        for k in xrange(self.dis.nlay):
            elev.append(botm[k, :, :])
        
        self.elev = np.array(elev)
        self.layer0 = 0
        self.layer1 = self.dis.nlay + 1
        
        zpts = []
        for k in xrange(self.layer0, self.layer1):
            zpts.append(plotutil.cell_value_points(self.xpts, self.xedge,
                                                   self.yedge,
                                                   self.elev[k, :, :]))
        self.zpts = np.array(zpts)
        
        xcentergrid = []
        zcentergrid = []
        nz = 0
        if self.dis.nlay == 1:
            for k in xrange(0, self.zpts.shape[0]):
                nz += 1
                nx = 0
                for i in xrange(0, self.xpts.shape[0], 2):
                    try:
                        xp = 0.5 * (self.xpts[i][2] + self.xpts[i+1][2])
                        zp = self.zpts[k, i]
                        xcentergrid.append(xp)
                        zcentergrid.append(zp)
                        nx += 1
                    except:
                        break
        else:
            for k in xrange(0, self.zpts.shape[0]-1):
                nz += 1
                nx = 0
                for i in xrange(0, self.xpts.shape[0], 2):
                    try:
                        xp = 0.5 * (self.xpts[i][2] + self.xpts[i+1][2])
                        zp = 0.5 * (self.zpts[k, i] + self.zpts[k+1, i+1])
                        xcentergrid.append(xp)
                        zcentergrid.append(zp)
                        nx += 1
                    except:
                        break
        self.xcentergrid = np.array(xcentergrid).reshape((nz, nx))
        self.zcentergrid = np.array(zcentergrid).reshape((nz, nx))
        
        # Create cross-section extent
        if extent is None:
            self.extent = self.get_extent()
        else:
            self.extent = extent

        # Set axis limits
        self.ax.set_xlim(self.extent[0], self.extent[1])
        self.ax.set_ylim(self.extent[2], self.extent[3])

        return
コード例 #8
0
ファイル: crosssection.py プロジェクト: joycezw/flopy
    def __init__(self,
                 ax=None,
                 model=None,
                 dis=None,
                 line=None,
                 xul=None,
                 yul=None,
                 rotation=0.,
                 extent=None):
        self.model = model
        if dis is None:
            if model is None:
                raise Exception('Cannot find discretization package')
            else:
                self.dis = model.get_package('DIS')
        else:
            self.dis = dis

        if line == None:
            s = 'line must be specified.'
            raise Exception(s)

        linekeys = [linekeys.lower() for linekeys in line.keys()]

        if len(linekeys) < 1:
            s = 'only row, column, or line can be specified in line dictionary.\n'
            s += 'keys specified: '
            for k in linekeys:
                s += '{} '.format(k)
            raise Exception(s)

        if 'row' in linekeys and 'column' in linekeys:
            s = 'row and column cannot both be specified in line dictionary.'
            raise Exception(s)

        if 'row' in linekeys and 'line' in linekeys:
            s = 'row and line cannot both be specified in line dictionary.'
            raise Exception(s)

        if 'column' in linekeys and 'line' in linekeys:
            s = 'column and line cannot both be specified in line dictionary.'
            raise Exception(s)

        if ax is None:
            self.ax = plt.gca()
        else:
            self.ax = ax

        # Set origin and rotation
        if xul is None:
            self.xul = 0.
        else:
            self.xul = xul
        if yul is None:
            self.yul = 0
        else:
            self.yul = yul
        self.rotation = -rotation * np.pi / 180.

        # Create edge arrays and meshgrid for pcolormesh
        self.xedge = self.get_xedge_array()
        self.yedge = self.get_yedge_array()

        # Create x and y center arrays and meshgrid of centers
        self.xcenter = self.get_xcenter_array()
        self.ycenter = self.get_ycenter_array()

        onkey = line.keys()[0]
        if 'row' in linekeys:
            self.direction = 'x'
            pts = [(self.xedge[0] + 0.1, self.ycenter[int(line[onkey])] - 0.1),
                   (self.xedge[-1] - 0.1, self.ycenter[int(line[onkey])] + 0.1)
                   ]
        elif 'column' in linekeys:
            self.direction = 'y'
            pts = [(self.xcenter[int(line[onkey])] + 0.1, self.yedge[0] - 0.1),
                   (self.xcenter[int(line[onkey])] - 0.1, self.yedge[-1] + 0.1)
                   ]
        else:
            self.direction = 'xy'
            verts = line[onkey]
            xp = []
            yp = []
            for [v1, v2] in verts:
                xp.append(v1)
                yp.append(v2)
            xp, yp = np.array(xp), np.array(yp)
            # remove offset and rotation from line
            xp -= self.xul
            yp -= self.yul
            xp, yp = rotate(xp, yp, -self.rotation, 0, self.yedge[0])
            pts = []
            for xt, yt in zip(xp, yp):
                pts.append((xt, yt))
        # convert pts list to numpy array
        self.pts = np.array(pts)

        # get points along the line
        self.xpts = plotutil.line_intersect_grid(self.pts, self.xedge,
                                                 self.yedge)
        if len(self.xpts) < 2:
            s = 'cross-section cannot be created\n.'
            s += '   less than 2 points intersect the model grid\n'
            s += '   {} points intersect the grid.'.format(len(self.xpts))
            raise Exception(s)

        # set horizontal distance
        d = []
        for v in self.xpts:
            d.append(v[2])
        self.d = np.array(d)

        top = self.dis.top.array
        botm = self.dis.botm.array
        elev = [top.copy()]
        for k in xrange(self.dis.nlay):
            elev.append(botm[k, :, :])

        self.elev = np.array(elev)
        self.layer0 = 0
        self.layer1 = self.dis.nlay + 1

        zpts = []
        for k in xrange(self.layer0, self.layer1):
            zpts.append(
                plotutil.cell_value_points(self.xpts, self.xedge, self.yedge,
                                           self.elev[k, :, :]))
        self.zpts = np.array(zpts)

        xcentergrid = []
        zcentergrid = []
        nz = 0
        if self.dis.nlay == 1:
            for k in xrange(0, self.zpts.shape[0]):
                nz += 1
                nx = 0
                for i in xrange(0, self.xpts.shape[0], 2):
                    try:
                        xp = 0.5 * (self.xpts[i][2] + self.xpts[i + 1][2])
                        zp = self.zpts[k, i]
                        xcentergrid.append(xp)
                        zcentergrid.append(zp)
                        nx += 1
                    except:
                        break
        else:
            for k in xrange(0, self.zpts.shape[0] - 1):
                nz += 1
                nx = 0
                for i in xrange(0, self.xpts.shape[0], 2):
                    try:
                        xp = 0.5 * (self.xpts[i][2] + self.xpts[i + 1][2])
                        zp = 0.5 * (self.zpts[k, i] + self.zpts[k + 1, i + 1])
                        xcentergrid.append(xp)
                        zcentergrid.append(zp)
                        nx += 1
                    except:
                        break
        self.xcentergrid = np.array(xcentergrid).reshape((nz, nx))
        self.zcentergrid = np.array(zcentergrid).reshape((nz, nx))

        # Create cross-section extent
        if extent is None:
            self.extent = self.get_extent()
        else:
            self.extent = extent

        # Set axis limits
        self.ax.set_xlim(self.extent[0], self.extent[1])
        self.ax.set_ylim(self.extent[2], self.extent[3])

        return
コード例 #9
0
    def __init__(self,
                 ax=None,
                 model=None,
                 dis=None,
                 layer=0,
                 xul=None,
                 yul=None,
                 rotation=0.,
                 extent=None):
        self.ml = model
        self.layer = layer
        if dis is None:
            if model is None:
                raise Exception('Cannot find discretization package')
            else:
                self.dis = model.get_package('DIS')
        else:
            self.dis = dis

        if self.layer < 0 or self.layer > self.dis.nlay - 1:
            s = 'Not a valid layer: {}.  Must be between 0 and {}.'.format(
                self.layer, self.dis.nlay - 1)
            raise Exception(s)

        if ax is None:
            self.ax = plt.gca()
        else:
            self.ax = ax

        # Set origin and rotation
        if xul is None:
            self.xul = 0.
        else:
            self.xul = xul
        if yul is None:
            self.yul = np.add.reduce(self.dis.delc.array)
        else:
            self.yul = yul
        self.rotation = -rotation * np.pi / 180.

        # Create edge arrays and meshgrid for pcolormesh
        self.xedge = self.get_xedge_array()
        self.yedge = self.get_yedge_array()
        self.xgrid, self.ygrid = np.meshgrid(self.xedge, self.yedge)
        self.xgrid, self.ygrid = rotate(self.xgrid, self.ygrid, self.rotation,
                                        0, self.yedge[0])
        self.xgrid += self.xul
        self.ygrid += self.yul - self.yedge[0]

        # Create x and y center arrays and meshgrid of centers
        self.xcenter = self.get_xcenter_array()
        self.ycenter = self.get_ycenter_array()
        self.xcentergrid, self.ycentergrid = np.meshgrid(
            self.xcenter, self.ycenter)
        self.xcentergrid, self.ycentergrid = rotate(self.xcentergrid,
                                                    self.ycentergrid,
                                                    self.rotation, 0,
                                                    self.yedge[0])
        self.xcentergrid += self.xul
        self.ycentergrid += self.yul - self.yedge[0]

        # Create model extent
        if extent is None:
            self.extent = self.get_extent()
        else:
            self.extent = extent

        # Set axis limits
        self.ax.set_xlim(self.extent[0], self.extent[1])
        self.ax.set_ylim(self.extent[2], self.extent[3])

        return
コード例 #10
0
    def plot_discharge(self,
                       frf,
                       fff,
                       flf=None,
                       head=None,
                       istep=1,
                       jstep=1,
                       **kwargs):
        """
        Use quiver to plot vectors.

        Parameters
        ----------
        frf : numpy.ndarray
            MODFLOW's 'flow right face'
        fff : numpy.ndarray
            MODFLOW's 'flow front face'
        flf : numpy.ndarray
            MODFLOW's 'flow lower face' (Default is None.)
        head : numpy.ndarray
            MODFLOW's head array.  If not provided, then will assume confined
            conditions in order to calculated saturated thickness.
        istep : int
            row frequency to plot. (Default is 1.)
        jstep : int
            column frequency to plot. (Default is 1.)
        kwargs : dictionary
            Keyword arguments passed to plt.quiver()

        Returns
        -------
        quiver : matplotlib.pyplot.quiver
            Vectors of specific discharge.

        """

        # Calculate specific discharge
        delr = self.dis.delr.array
        delc = self.dis.delc.array
        top = self.dis.top.array
        botm = self.dis.botm.array
        nlay, nrow, ncol = botm.shape
        laytyp = None
        hnoflo = 999.
        hdry = 999.
        if self.ml is not None:
            lpf = self.ml.get_package('LPF')
            if lpf is not None:
                laytyp = lpf.laytyp.array
                hdry = lpf.hdry
            bas = self.ml.get_package('BAS6')
            if bas is not None:
                hnoflo = bas.hnoflo

        # If no access to head or laytyp, then calculate confined saturated
        # thickness by setting laytyp to zeros
        if head is None or laytyp is None:
            head = np.zeros(botm.shape, np.float32)
            laytyp = np.zeros((nlay), dtype=np.int)
        sat_thk = plotutil.saturated_thickness(head, top, botm, laytyp,
                                               [hnoflo, hdry])

        # Calculate specific discharge
        qx, qy, qz = plotutil.centered_specific_discharge(
            frf, fff, flf, delr, delc, sat_thk)

        # Select correct slice and step
        x = self.xcentergrid[::istep, ::jstep]
        y = self.ycentergrid[::istep, ::jstep]
        u = qx[self.layer, :, :]
        v = qy[self.layer, :, :]
        u = u[::istep, ::jstep]
        v = v[::istep, ::jstep]

        # Rotate and plot
        urot, vrot = rotate(u, v, self.rotation)
        quiver = self.ax.quiver(x, y, urot, vrot, **kwargs)

        return quiver