def demo(): """ Build a network and show its backprop graph. """ from plugins.backprop_visualizer import make_dot_backprop from plugins.genome_visualizer import make_dot_genome genome = [ [[1], [0, 0], [1, 0, 0], [1]], [ # Phase will be ignored, there are no active connections (residual is not counted as active). [0], [0, 0], [0, 0, 0], [1] ], [[1], [0, 0], [0, 0, 0], [0, 0, 0, 0], [1]] ] channels = [(3, 8), (8, 8), (8, 8)] data = torch.randn(16, 3, 32, 32) chopped = [gene[:-1] for gene in genome] make_dot_genome(chopped).view() model = ResidualGenomeDecoder(genome, channels, repeats=[1, 2, 3]).get_model() out = model(torch.autograd.Variable(data)) make_dot_backprop(out).view()
def demo(): from plugins.backprop_visualizer import make_dot_backprop genome = [[[1], [0, 0], [1, 1, 1], [1], [2]], [[0], [0, 0], [0, 0, 0], [1], [2]], [[1], [0, 0], [1, 0, 1], [1, 1, 0, 1], [0], [2]]] channels = [(3, 8), (8, 16), (16, 32)] data = torch.randn(16, 3, 32, 32) model = VariableGenomeDecoder(genome, channels).get_model() out = model(torch.autograd.Variable(data)) make_dot_backprop(out).view()
def demo(): from plugins.backprop_visualizer import make_dot_backprop genome = [ [[1], [0, 0], [1, 1, 1], [1]], [ # Phase will be ignored, there are no active connections (residual is not counted as active). [0], [0, 0], [0, 0, 0], [1] ], [[1], [0, 0], [1, 1, 1], [0, 0, 1, 0], [1]] ] channels = [(3, 8), (8, 8), (8, 8)] data = torch.randn(16, 3, 32, 32) model = ResidualGenomeDecoder(genome, channels).get_model() out = model(torch.autograd.Variable(data)) make_dot_backprop(out).view()
def demo(): """ Build a network and show its backprop graph. """ from plugins.backprop_visualizer import make_dot_backprop from plugins.genome_visualizer import make_dot_genome genome = [[[1], [0, 1], [0, 1, 0], [1, 1, 0, 1], [1, 0, 1, 0, 0], [0]], [[0], [0, 1], [0, 0, 1], [0, 1, 0, 1], [1, 0, 1, 1, 1], [0]], [[1], [0, 0], [0, 1, 0], [0, 0, 1, 1], [1, 1, 0, 1, 1], [1]]] channels = [(3, 32), (32, 32), (32, 32)] data = torch.randn(16, 3, 32, 32) make_dot_genome(genome).view() model = DenseGenomeDecoder(genome, channels).get_model() out = model(torch.autograd.Variable(data)) make_dot_backprop(out).view()