コード例 #1
0
ファイル: conformance.py プロジェクト: pm4py/pm4py-core
def conformance_diagnostics_alignments(log: EventLog, *args, multi_processing: bool = False) -> List[Dict[str, Any]]:
    """
    Apply the alignments algorithm between a log and a process model.
    The methods return the full alignment diagnostics.

    Parameters
    -------------
    log
        Event log
    args
        Specification of the process model
    multi_processing
        Boolean value that enables the multiprocessing (default: False)

    Returns
    -------------
    aligned_traces
        A list of alignments for each trace of the log (in the same order as the traces in the event log)
    """
    if type(log) not in [pd.DataFrame, EventLog, EventStream]: raise Exception("the method can be applied only to a traditional event log!")

    if len(args) == 3:
        if type(args[0]) is PetriNet:
            # Petri net alignments
            from pm4py.algo.conformance.alignments.petri_net import algorithm as alignments
            if multi_processing:
                return alignments.apply_multiprocessing(log, args[0], args[1], args[2], parameters=get_properties(log))
            else:
                return alignments.apply(log, args[0], args[1], args[2], parameters=get_properties(log))
        elif type(args[0]) is dict or type(args[0]) is Counter:
            # DFG alignments
            from pm4py.algo.conformance.alignments.dfg import algorithm as dfg_alignment
            return dfg_alignment.apply(log, args[0], args[1], args[2], parameters=get_properties(log))
    elif len(args) == 1:
        if type(args[0]) is ProcessTree:
            # process tree alignments
            from pm4py.algo.conformance.alignments.process_tree.variants import search_graph_pt
            if multi_processing:
                return search_graph_pt.apply_multiprocessing(log, args[0], parameters=get_properties(log))
            else:
                return search_graph_pt.apply(log, args[0], parameters=get_properties(log))
    # try to convert to Petri net
    import pm4py
    from pm4py.algo.conformance.alignments.petri_net import algorithm as alignments
    net, im, fm = pm4py.convert_to_petri_net(*args)
    if multi_processing:
        return alignments.apply_multiprocessing(log, net, im, fm, parameters=get_properties(log))
    else:
        return alignments.apply(log, net, im, fm, parameters=get_properties(log))
コード例 #2
0
 def test_tree_align_reviewing_classifier_different_key(self):
     import pm4py
     log = pm4py.read_xes("compressed_input_data/04_reviewing.xes.gz")
     for trace in log:
         for event in trace:
             event["@@classifier"] = event["concept:name"] + "+" + event[
                 "lifecycle:transition"]
     from pm4py.algo.discovery.inductive.variants.im_f import algorithm as im_f
     tree = im_f.apply_tree(
         log, parameters={im_f.Parameters.ACTIVITY_KEY: "@@classifier"})
     from pm4py.algo.conformance.alignments.process_tree.variants import search_graph_pt
     al = search_graph_pt.apply(log,
                                tree,
                                parameters={
                                    search_graph_pt.Parameters.ACTIVITY_KEY:
                                    "@@classifier"
                                })
コード例 #3
0
                fp_log, fp_tree_imd)
            fitness_im_clean = pm4py.algo.conformance.footprints.util.evaluation.fp_fitness(
                fp_log, fp_tree_im, fp_conf_im_clean)
            fitness_im = pm4py.algo.conformance.footprints.util.evaluation.fp_fitness(
                fp_log, fp_tree_im, fp_conf_im)
            fitness_imd = pm4py.algo.conformance.footprints.util.evaluation.fp_fitness(
                fp_log, fp_tree_imd, fp_conf_imd)
            fitness_imf = pm4py.algo.conformance.footprints.util.evaluation.fp_fitness(
                fp_log, fp_tree_imf, fp_conf_imf)

            if ENABLE_ALIGNMENTS:
                from pm4py.algo.conformance.alignments.process_tree.variants import search_graph_pt

                alignments_clean = search_graph_pt.apply(
                    log,
                    tree_im_clean,
                    parameters={
                        search_graph_pt.Parameters.ACTIVITY_KEY: CLASSIFIER
                    })
                from pm4py.evaluation.replay_fitness.variants import alignment_based

                fitness_al_clean = alignment_based.evaluate(
                    alignments_clean)["average_trace_fitness"]
                if fitness_al_clean < fitness_im_clean:
                    print("ALERT")
                    input()
                else:
                    print("OK ALIGNMENTS", fitness_al_clean)

            precision_im_clean = pm4py.algo.conformance.footprints.util.evaluation.fp_precision(
                fp_log, fp_tree_clean)
            precision_im = pm4py.algo.conformance.footprints.util.evaluation.fp_precision(