def test_importing_csv(self): from pm4py.objects.log.importer.csv import factory as csv_importer df = csv_importer.import_dataframe_from_path( os.path.join("input_data", "running-example.csv")) df = csv_importer.import_dataframe_from_path_wo_timeconversion( os.path.join("input_data", "running-example.csv")) stream = csv_importer.apply( os.path.join("input_data", "running-example.csv")) stru = "case:concept:name,concept:name,time:timestamp\nA1,A,1970-01-01 01:00:00\n" df = csv_importer.import_dataframe_from_csv_string(stru) stream = csv_importer.import_log_from_string(stru)
def test_inductiveminer_stream(self): stream = csv_importer.apply( os.path.join("input_data", "running-example.csv")) net, im, fm = inductive_miner.apply(stream) aligned_traces_tr = tr_factory.apply(stream, net, im, fm) aligned_traces_alignments = align_factory.apply(stream, net, im, fm) evaluation = eval_factory.apply(stream, net, im, fm) fitness = rp_fit_factory.apply(stream, net, im, fm) precision = precision_factory.apply(stream, net, im, fm) generalization = generalization_factory.apply(stream, net, im, fm) simplicity = simplicity_factory.apply(net)
def test_csvimp_xesexp(self): log0 = csv_importer.apply( os.path.join("input_data", "running-example.csv")) log = log_conv_factory.apply(log0, variant=log_conv_factory.TO_EVENT_LOG) stream = log_conv_factory.apply( log0, variant=log_conv_factory.TO_EVENT_STREAM) df = log_conv_factory.apply(log0, variant=log_conv_factory.TO_DATAFRAME) xes_exporter_factory.apply(log, "ru.xes") xes_exporter_factory.apply(stream, "ru.xes") xes_exporter_factory.apply(df, "ru.xes") os.remove('ru.xes')
def test_ts_stream(self): stream = csv_importer.apply( os.path.join("input_data", "running-example.csv")) ts = ts_disc_factory.apply(stream)
def test_dfg_stream(self): stream = csv_importer.apply( os.path.join("input_data", "running-example.csv")) dfg = dfg_mining_factory.apply(stream)