コード例 #1
0
def compute_alignment(xes_file, pnml_file):
    """
    Compute alignments for event log with given model.
    Save alignments results and all metrics during computation in a csv file.

    Parameters
    ----------
    xes_file : .xes  file
               The xes file of the event log
    pnml_file : .pnml file
                The petri net model
    """

    event_log = xes_importer.apply(xes_file)
    model_net, model_im, model_fm = petri_importer.apply(pnml_file)
    # get log name and model name
    log_name = Path(log_path).stem
    model_name = Path(model_path).stem
    # define the column name in result file
    field_names = [
        'case_id', 'total', 'heuristic', 'queue', 'states', 'arcs', 'sum',
        'num_insert', 'num_removal', 'num_update', 'simple_lp', 'complex_lp',
        'restart', 'split_num', 'trace_length', 'alignment_length', 'cost',
        'alignment'
    ]
    df = pd.DataFrame(columns=field_names)
    trace_variant_lst = {}
    # iterate every case in log
    for case_index in tqdm(range(len(event_log))):
        events_lst = []
        for event in event_log[case_index]:
            events_lst.append(event['concept:name'])
        trace_str = ''.join(events_lst)
        # if the sequence of events is met for the first time
        if trace_str not in trace_variant_lst:
            # construct synchronous product net
            sync_product = SynchronousProduct(event_log[case_index], model_net,
                                              model_im, model_fm)
            initial_marking, final_marking, cost_function, incidence_matrix, trace_sync, trace_log \
                = sync_product.construct_sync_product(event_log[case_index], model_net, model_im, model_fm)
            # compute alignment with split-pint-based algorithm + caching strategy + reopen method
            start_time = timeit.default_timer()
            ali_with_split_astar = AlignmentWithCacheReopenAstar(
                initial_marking, final_marking, cost_function,
                incidence_matrix, trace_sync, trace_log)
            alignment_result = ali_with_split_astar.search()
            # get the total computation time
            alignment_result['total'] = timeit.default_timer() - start_time
            alignment_result['case_id'] = event_log[case_index].attributes[
                'concept:name']
            trace_variant_lst[trace_str] = alignment_result
        else:
            alignment_result = trace_variant_lst[trace_str]
            alignment_result['case_id'] = event_log[case_index].attributes[
                'concept:name']
        df = df.append(alignment_result, ignore_index=True)
    # The name of result csv file is of the form: 'log_name + model_name + algorithm type.csv'
    df.to_csv('../results/log=' + log_name + '&model=' + model_name +
              '&algorithm=cache_reopen_astar' + '.csv',
              index=False)
コード例 #2
0
 def test_importingPetriLogAlignment(self):
     # to avoid static method warnings in tests,
     # that by construction of the unittest package have to be expressed in such way
     self.dummy_variable = "dummy_value"
     imported_petri1, marking1, fmarking1 = petri_importer.apply(
         os.path.join(INPUT_DATA_DIR, "running-example.pnml"))
     log = xes_importer.apply(
         os.path.join(INPUT_DATA_DIR, "running-example.xes"))
     final_marking = petri_net.obj.Marking()
     for p in imported_petri1.places:
         if not p.out_arcs:
             final_marking[p] = 1
     for trace in log:
         cf_result = align_alg.apply(
             trace,
             imported_petri1,
             marking1,
             final_marking,
             variant=align_alg.VERSION_DIJKSTRA_NO_HEURISTICS)['alignment']
         is_fit = True
         for couple in cf_result:
             if not (couple[0] == couple[1]
                     or couple[0] == ">>" and couple[1] is None):
                 is_fit = False
         if not is_fit:
             raise Exception("should be fit")
コード例 #3
0
 def test_simulate_petrinet_start_params(self):
     net, im, fm = pnml_importer.apply(
         os.path.join(INPUT_DATA_DIR, "running-example.pnml"))
     number_of_traces = 10
     timestamp = 50000000
     case_id = 5
     eventlog = simulator.apply(
         net,
         im,
         fm,
         variant=simulator.Variants.BASIC_PLAYOUT,
         parameters={
             simulator.Variants.BASIC_PLAYOUT.value.Parameters.NO_TRACES:
             number_of_traces,
             simulator.Variants.BASIC_PLAYOUT.value.Parameters.INITIAL_TIMESTAMP:
             timestamp,
             simulator.Variants.BASIC_PLAYOUT.value.Parameters.INITIAL_CASE_ID:
             case_id
         })
     self.assertEqual(len(eventlog), number_of_traces)
     last_case_id = case_id + number_of_traces - 1
     self.assertEqual(eventlog[0].attributes['concept:name'], str(case_id))
     self.assertEqual(datetime.timestamp(eventlog[0][0]['time:timestamp']),
                      timestamp)
     self.assertEqual(eventlog[-1].attributes['concept:name'],
                      str(last_case_id))
コード例 #4
0
 def test_importingPetriLogTokenReplay(self):
     # to avoid static method warnings in tests,
     # that by construction of the unittest package have to be expressed in such way
     self.dummy_variable = "dummy_value"
     imported_petri1, marking1, fmarking1 = petri_importer.apply(
         os.path.join(INPUT_DATA_DIR, "running-example.pnml"))
     log = xes_importer.apply(
         os.path.join(INPUT_DATA_DIR, "running-example.xes"))
     aligned_traces = token_replay.apply(log, imported_petri1, marking1,
                                         fmarking1)
     del aligned_traces
コード例 #5
0
    def test_importingExportingPetri(self):
        # to avoid static method warnings in tests,
        # that by construction of the unittest package have to be expressed in such way
        self.dummy_variable = "dummy_value"
        imported_petri1, marking1, fmarking1 = petri_importer.apply(
            os.path.join(INPUT_DATA_DIR, "running-example.pnml"))
        petri_exporter.apply(
            imported_petri1, marking1,
            os.path.join(OUTPUT_DATA_DIR, "running-example.pnml"))
        imported_petri2, marking2, fmarking2 = petri_importer.apply(
            os.path.join(OUTPUT_DATA_DIR, "running-example.pnml"))

        self.assertEqual(sorted([x.name for x in imported_petri1.places]),
                         sorted([x.name for x in imported_petri2.places]))
        self.assertEqual(sorted([x.name for x in imported_petri1.transitions]),
                         sorted([x.name for x in imported_petri2.transitions]))
        self.assertEqual(
            sorted(
                [x.source.name + x.target.name for x in imported_petri1.arcs]),
            sorted(
                [x.source.name + x.target.name for x in imported_petri2.arcs]))
        self.assertEqual([x.name for x in marking1],
                         [x.name for x in marking2])
        os.remove(os.path.join(OUTPUT_DATA_DIR, "running-example.pnml"))
コード例 #6
0
def testNoSynchronousDiscountedAlignment():
    '''
    This function runs an alignment based on the discounted edit distance
    By using the Petri net and petri_net.utils.align_utils.discountedEditDistance function
    '''
    log_path = os.path.join("..", "tests", "input_data", "running-example.xes")
    pnml_path = os.path.join("..", "tests", "input_data", "running-example.pnml")
    log = xes_importer.apply(log_path)
    net, marking, fmarking = petri_importer.apply(pnml_path)

    start=time.time()

    alignments1 = ali.apply(log._list[0], net, marking, fmarking,
                            variant=ali.VERSION_DISCOUNTED_A_STAR,
                            parameters={ali.Parameters.SYNCHRONOUS:False,ali.Parameters.EXPONENT:1.1})
    print(alignments1)
    print("Time:",(time.time()-start))
コード例 #7
0
ファイル: read.py プロジェクト: pm4py/pm4py-core
def read_pnml(file_path: str) -> Tuple[PetriNet, Marking, Marking]:
    """
    Reads a Petri net from the .PNML format

    Parameters
    ----------------
    file_path
        File path

    Returns
    ----------------
    petri_net
        Petri net object
    initial_marking
        Initial marking
    final_marking
        Final marking
    """
    from pm4py.objects.petri_net.importer import importer as pnml_importer
    net, im, fm = pnml_importer.apply(file_path)
    return net, im, fm
コード例 #8
0
def testSynchronousDiscountedAlignment():
    '''
    This function runs an alignment based on the discounted edit distance
    By using the synchronous product
    :return:
    '''
    log_path = os.path.join("..", "tests", "input_data", "running-example.xes")
    pnml_path = os.path.join("..", "tests", "input_data", "running-example.pnml")
    log = xes_importer.apply(log_path)
    net, marking, fmarking = petri_importer.apply(pnml_path)

    # to see the net :
    #vizu(net,marking,fmarking).view()

    start=time.time()

    alignments1 = ali.apply(log._list[0], net, marking, fmarking,
                            variant=ali.VERSION_DISCOUNTED_A_STAR,
                            parameters={ali.Parameters.SYNCHRONOUS:True,ali.Parameters.EXPONENT:1.1})
    print(alignments1)
    print("Time:",(time.time()-start))
コード例 #9
0
ファイル: read.py プロジェクト: pm4py/pm4py-core
def read_petri_net(file_path: str) -> Tuple[PetriNet, Marking, Marking]:
    warnings.warn('read_petri_net is deprecated, use read_pnml instead', DeprecationWarning)
    """
    Reads a Petri net from the .PNML format

    Parameters
    ----------------
    file_path
        File path

    Returns
    ----------------
    petri_net
        Petri net object
    initial_marking
        Initial marking
    final_marking
        Final marking
    """
    from pm4py.objects.petri_net.importer import importer as pnml_importer
    net, im, fm = pnml_importer.apply(file_path)
    return net, im, fm
コード例 #10
0
def execute_script():
    log_path = os.path.join("..", "tests", "input_data", "running-example.xes")
    pnml_path = os.path.join("..", "tests", "input_data", "running-example.pnml")

    # log_path = 'C:/Users/bas/Documents/tue/svn/private/logs/a32_logs/a32f0n05.xes'
    # pnml_path = 'C:/Users/bas/Documents/tue/svn/private/logs/a32_logs/a32.pnml'

    log = xes_importer.apply(log_path)
    net, marking, fmarking = petri_importer.apply(pnml_path)

    model_cost_function = dict()
    sync_cost_function = dict()
    for t in net.transitions:
        if t.label is not None:
            model_cost_function[t] = 1000
            sync_cost_function[t] = 0
        else:
            model_cost_function[t] = 1

    alignments = ali.petri_net.algorithm.apply(log, net, marking, fmarking)
    print(alignments)
    pretty_print_alignments(alignments)
コード例 #11
0
 def test_simulate_petrinet(self):
     net, im, fm = pnml_importer.apply(
         os.path.join(INPUT_DATA_DIR, "running-example.pnml"))
     number_of_traces = 10
     eventlog = simulator.apply(
         net,
         im,
         fm,
         variant=simulator.Variants.BASIC_PLAYOUT,
         parameters={
             simulator.Variants.BASIC_PLAYOUT.value.Parameters.NO_TRACES:
             number_of_traces
         })
     self.assertEqual(len(eventlog), number_of_traces)
     case_id_default = 0
     last_case_id = case_id_default + number_of_traces - 1
     timestamp_default = 10000000
     self.assertEqual(eventlog[0].attributes['concept:name'],
                      str(case_id_default))
     self.assertEqual(datetime.timestamp(eventlog[0][0]['time:timestamp']),
                      timestamp_default)
     self.assertEqual(eventlog[-1].attributes['concept:name'],
                      str(last_case_id))
コード例 #12
0
import os

from pm4py.algo.conformance.antialignments.variants.discounted_a_star import apply as antii
from pm4py.algo.conformance.antialignments.algorithm import Parameters
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.objects.petri_net.importer import importer as petri_importer

if __name__ == '__main__':
    log_path = os.path.join("..", "tests", "input_data", "running-example.xes")
    pnml_path = os.path.join("..", "tests", "input_data",
                             "running-example.pnml")
    log = xes_importer.apply(log_path)
    net, marking, fmarking = petri_importer.apply(pnml_path)

    THETA = 1.5
    MU = 20
    EPSILON = 0.01
    resAnti = antii(log,
                    net,
                    marking,
                    fmarking,
                    parameters={
                        Parameters.EXPONENT: THETA,
                        Parameters.EPSILON: EPSILON,
                        Parameters.MARKING_LIMIT: MU
                    })
    print(resAnti['anti-alignment'])
    print("Precision:", resAnti['precision'])