def test_constant0_variable_2(self): # to avoid static method warnings in tests, # that by construction of the unittest package have to be expressed in such way self.dummy_variable = "dummy_value" const = Constant0() values = [0.0000001, 0.0000001, 0.0000002] loglikeli = const.calculate_loglikelihood(values) if abs(loglikeli) < 10000000: raise Exception("problem in managing constant variables") rand = RandomVariable() rand.calculate_parameters(values) if not rand.get_distribution_type() == "IMMEDIATE": raise Exception("Expected a constant!") loglikeli = rand.calculate_loglikelihood(values) if abs(loglikeli) < 10000000: raise Exception("problem in managing constant variables (2)")
def test_exponential_variable(self): # to avoid static method warnings in tests, # that by construction of the unittest package have to be expressed in such way self.dummy_variable = "dummy_value" loc = 0 scale = 5 tol = 0.2 exp = Exponential(loc=loc, scale=scale) values = exp.get_values(no_values=400) rand = RandomVariable() rand.calculate_parameters(values) if not rand.get_distribution_type() == "EXPONENTIAL": raise Exception("Expected an exponential!") loc_r = rand.random_variable.loc scale_r = rand.random_variable.scale diff_value_loc = abs(loc - loc_r) / (max(abs(loc), abs(loc_r)) + 0.000001) diff_value_scale = abs(scale - scale_r) / (max(abs(scale), abs(scale_r)) + 0.000001) if diff_value_loc > tol or diff_value_scale > tol: raise Exception("parameters found outside tolerance")
def test_normal_variable(self): # to avoid static method warnings in tests, # that by construction of the unittest package have to be expressed in such way self.dummy_variable = "dummy_value" mu = 53 sigma = 4 tol = 0.15 norm = Normal(mu=mu, sigma=sigma) values = norm.get_values(no_values=400) rand = RandomVariable() rand.calculate_parameters(values) if not rand.get_distribution_type() == "NORMAL": raise Exception("Excepted a normal!") mu_r = rand.random_variable.mu sigma_r = rand.random_variable.sigma diff_value_mu = abs(mu - mu_r) / (max(abs(mu), abs(mu_r))) diff_value_sigma = abs(sigma - sigma_r) / (max(abs(sigma), abs(sigma_r))) if diff_value_mu > tol or diff_value_sigma > tol: raise Exception("parameters found outside tolerance")
def test_uniform_variable(self): # to avoid static method warnings in tests, # that by construction of the unittest package have to be expressed in such way self.dummy_variable = "dummy_value" loc = 53 scale = 32 tol = 0.15 unif = Uniform(loc=loc, scale=scale) values = unif.get_values(no_values=400) rand = RandomVariable() rand.calculate_parameters(values) if not rand.get_distribution_type() == "UNIFORM": raise Exception("Expected an uniform!") loc_r = rand.random_variable.loc scale_r = rand.random_variable.scale diff_value_loc = abs(loc - loc_r) / (max(abs(loc), abs(loc_r))) diff_value_scale = abs(scale - scale_r) / (max(abs(scale), abs(scale_r))) if diff_value_loc > tol or diff_value_scale > tol: raise Exception("parameters found outside tolerance")
def get_map_from_log_and_net(log, net, initial_marking, final_marking, force_distribution=None, parameters=None): """ Get transition stochastic distribution map given the log and the Petri net Parameters ----------- log Event log net Petri net initial_marking Initial marking of the Petri net final_marking Final marking of the Petri net force_distribution If provided, distribution to force usage (e.g. EXPONENTIAL) parameters Parameters of the algorithm, including: PARAM_ACTIVITY_KEY -> activity name PARAM_TIMESTAMP_KEY -> timestamp key Returns ----------- stochastic_map Map that to each transition associates a random variable """ stochastic_map = {} if parameters is None: parameters = {} activity_key = parameters[ PARAM_ACTIVITY_KEY] if PARAM_ACTIVITY_KEY in parameters else log_lib.util.xes.DEFAULT_NAME_KEY timestamp_key = parameters[ PARAM_TIMESTAMP_KEY] if PARAM_TIMESTAMP_KEY in parameters else "time:timestamp" parameters_variants = {PARAM_ACTIVITY_KEY: activity_key} variants_idx = variants_module.get_variants_from_log_trace_idx( log, parameters=parameters_variants) variants = variants_module.convert_variants_trace_idx_to_trace_obj( log, variants_idx) parameters_tr = {PARAM_ACTIVITY_KEY: activity_key, "variants": variants} # do the replay aligned_traces = token_replay.apply(log, net, initial_marking, final_marking, parameters=parameters_tr) element_statistics = performance_map.single_element_statistics( log, net, initial_marking, aligned_traces, variants_idx, activity_key=activity_key, timestamp_key=timestamp_key) for el in element_statistics: if type( el ) is PetriNet.Transition and "performance" in element_statistics[el]: values = element_statistics[el]["performance"] rand = RandomVariable() rand.calculate_parameters(values, force_distribution=force_distribution) no_of_times_enabled = element_statistics[el]['no_of_times_enabled'] no_of_times_activated = element_statistics[el][ 'no_of_times_activated'] if no_of_times_enabled > 0: rand.set_weight( float(no_of_times_activated) / float(no_of_times_enabled)) else: rand.set_weight(0.0) stochastic_map[el] = rand return stochastic_map
def get_map_from_log_and_net(log, net, initial_marking, final_marking, force_distribution=None, parameters=None): """ Get transition stochastic distribution map given the log and the Petri net Parameters ----------- log Event log net Petri net initial_marking Initial marking of the Petri net final_marking Final marking of the Petri net force_distribution If provided, distribution to force usage (e.g. EXPONENTIAL) parameters Parameters of the algorithm, including: Parameters.ACTIVITY_KEY -> activity name Parameters.TIMESTAMP_KEY -> timestamp key Returns ----------- stochastic_map Map that to each transition associates a random variable """ stochastic_map = {} if parameters is None: parameters = {} token_replay_variant = exec_utils.get_param_value( Parameters.TOKEN_REPLAY_VARIANT, parameters, executor.Variants.TOKEN_REPLAY) activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY) timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes_constants.DEFAULT_TIMESTAMP_KEY) parameters_variants = { constants.PARAMETER_CONSTANT_ACTIVITY_KEY: activity_key } variants_idx = variants_module.get_variants_from_log_trace_idx( log, parameters=parameters_variants) variants = variants_module.convert_variants_trace_idx_to_trace_obj( log, variants_idx) parameters_tr = { token_replay.Parameters.ACTIVITY_KEY: activity_key, token_replay.Parameters.VARIANTS: variants } # do the replay aligned_traces = executor.apply(log, net, initial_marking, final_marking, variant=token_replay_variant, parameters=parameters_tr) element_statistics = performance_map.single_element_statistics( log, net, initial_marking, aligned_traces, variants_idx, activity_key=activity_key, timestamp_key=timestamp_key, parameters={"business_hours": True}) for el in element_statistics: if type( el ) is PetriNet.Transition and "performance" in element_statistics[el]: values = element_statistics[el]["performance"] rand = RandomVariable() rand.calculate_parameters(values, force_distribution=force_distribution) no_of_times_enabled = element_statistics[el]['no_of_times_enabled'] no_of_times_activated = element_statistics[el][ 'no_of_times_activated'] if no_of_times_enabled > 0: rand.set_weight( float(no_of_times_activated) / float(no_of_times_enabled)) else: rand.set_weight(0.0) stochastic_map[el] = rand return stochastic_map