コード例 #1
0
def execute_script():
    # loads the dataframe from the CSV file
    csv_path = os.path.join("..", "tests", "input_data", "running-example.csv")
    df = csv_import_adapter.import_dataframe_from_path(csv_path)
    # calculates the Matrix Container object
    mco = sna_transformer.apply(df)
    # calculates the Handover of Work matrix
    hw_matrix = handover_of_work.apply(mco)
    # calculates the Similar Activities matrix
    sim_act_matrix = similar_activities.apply(mco)
    # shows the Handover of Work graph
    gviz = sna_vis_factory.apply(mco, hw_matrix, parameters={"format": "svg"})
    sna_vis_factory.view(gviz)
    # shows the Similar Activities graph
    gviz = sna_vis_factory.apply(mco,
                                 sim_act_matrix,
                                 parameters={
                                     "format": "svg",
                                     "threshold": 0.0
                                 })
    sna_vis_factory.view(gviz)
    # calculates the Real Handover of Work matrix
    real_hw_matrix = real_handover_of_work.apply(mco,
                                                 parameters={"format": "svg"})
    gviz = sna_vis_factory.apply(mco, real_hw_matrix)
コード例 #2
0
ファイル: get_sna.py プロジェクト: zhengyuxin/pm4py-ws
def apply(log, variant="handover", parameters=None):
    """
    Gets the Social Network according to the specified metric and arc threshold

    Parameters
    -------------
    log
        Log
    variant
        Variant of the algorithm to use
    parameters
        Possible parameters of the algorithm (arc threshold)

    Returns
    -------------
    sna
        Social Network representation
    """
    if parameters is None:
        parameters = {}

    parameters["metric_normalization"] = True

    metric = sna_factory.apply(log, variant=variant, parameters=parameters)
    pyvis_repr = sna_vis_factory.apply(metric,
                                       variant="pyvis",
                                       parameters=parameters)

    return open(pyvis_repr).read()
コード例 #3
0
def execute_script():
    # loads the log from XES file
    log_path = os.path.join("..", "tests", "input_data", "receipt.xes")
    log = xes_importer.apply(log_path)
    # calculates the Matrix Container object
    mco = sna_transformer.apply(log)
    # calculates the Handover of Work matrix
    hw_matrix = handover_of_work.apply(mco)
    # calculates the Similar Activities matrix
    sim_act_matrix = similar_activities.apply(mco)
    # shows the Handover of Work graph
    gviz = sna_vis_factory.apply(mco, hw_matrix, variant="pyvis")
    sna_vis_factory.view(gviz, variant="pyvis")
    # shows the Similar Activities graph
    gviz = sna_vis_factory.apply(mco,
                                 sim_act_matrix,
                                 parameters={"threshold": 0.0},
                                 variant="pyvis")
    sna_vis_factory.view(gviz, variant="pyvis")
コード例 #4
0
def execute_script():
    log = xes_importer.apply(
        os.path.join("..", "tests", "input_data", "running-example.xes"))

    hw_values = sna_factory.apply(log, variant="handover")
    wt_values = sna_factory.apply(log, variant="working_together")
    sub_values = sna_factory.apply(log, variant="subcontracting")
    ja_values = sna_factory.apply(log, variant="jointactivities")

    gviz_sub = pn_vis_factory.apply(sub_values,
                                    variant="networkx",
                                    parameters={"format": "svg"})
    gviz_hw = pn_vis_factory.apply(hw_values, variant="pyvis")
    gviz_wt = pn_vis_factory.apply(wt_values,
                                   variant="networkx",
                                   parameters={"format": "svg"})
    gviz_ja = pn_vis_factory.apply(ja_values, variant="pyvis")

    pn_vis_factory.view(gviz_sub, variant="networkx")
    pn_vis_factory.view(gviz_hw, variant="pyvis")
    pn_vis_factory.view(gviz_wt, variant="networkx")
    pn_vis_factory.view(gviz_ja, variant="pyvis")
コード例 #5
0
def work_handover():
    try:
        print(
            "Kindly enter the name of your formatted file\n"
            "Note: please include .csv file extension and make sure that input file has no blank rows or columns"
        )
        filename = str(input())
        dataframe = csv_import_adapter.import_dataframe_from_path(filename,
                                                                  sep=",")
        from pm4py.objects.conversion.log import factory as conversion_factory  # lib to convert csv to xes
        log = conversion_factory.apply(dataframe)
        from pm4py.algo.enhancement.sna import factory as sna_factory
        hw_values = sna_factory.apply(log, variant="handover")
        from pm4py.visualization.sna import factory as sna_vis_factory
        gviz_hw_py = sna_vis_factory.apply(hw_values, variant="pyvis")
        sna_vis_factory.view(gviz_hw_py, variant="pyvis")
    except FileNotFoundError:
        print("Please check your file name")