def main(): """ NAME fishrot.py DESCRIPTION generates set of Fisher distribed data from specified distribution SYNTAX fishrot.py [-h][-i][command line options] OPTIONS -h prints help message and quits -i for interactive entry -k kappa specify kappa, default is 20 -n N specify N, default is 100 -D D specify mean Dec, default is 0 -I I specify mean Inc, default is 90 where: kappa: fisher distribution concentration parameter N: number of directions desired OUTPUT dec, inc """ N,kappa,D,I=100,20.,0.,90. if len(sys.argv)!=0 and '-h' in sys.argv: print main.__doc__ sys.exit() elif '-i' in sys.argv: ans=raw_input(' Kappa: ') kappa=float(ans) ans=raw_input(' N: ') N=int(ans) ans=raw_input(' Mean Dec: ') D=float(ans) ans=raw_input(' Mean Inc: ') I=float(ans) else: if '-k' in sys.argv: ind=sys.argv.index('-k') kappa=float(sys.argv[ind+1]) if '-n' in sys.argv: ind=sys.argv.index('-n') N=int(sys.argv[ind+1]) if '-D' in sys.argv: ind=sys.argv.index('-D') D=float(sys.argv[ind+1]) if '-I' in sys.argv: ind=sys.argv.index('-I') I=float(sys.argv[ind+1]) for k in range(N): dec,inc= pmag.fshdev(kappa) # send kappa to fshdev drot,irot=pmag.dodirot(dec,inc,D,I) print '%7.1f %7.1f ' % (drot,irot)
def get_fish(dir): """ generate fisher distributed points according to the supplied parameters (includes dec,inc,n,k) in a pandas object. """ tempD,tempI=[],[] for k in range(int(dir.n)): dec,inc=pmag.fshdev(dir.k) drot,irot=pmag.dodirot(dec,inc,dir.dec,dir.inc) tempD.append(drot) tempI.append(irot) return np.column_stack((tempD,tempI))
def fishrot(kappa,N,D,I): #from Pmagpy """ Description: generates set of Fisher distributed data from specified distribution Input: kappa (fisher distribution concentration parameter), number of desired subsamples, Dec and Inc Output: list with N pairs of Dec, Inc. """ out_d=[] out=[] for k in range(N): dec,inc= pmag.fshdev(kappa) # send kappa to fshdev drot,irot=pmag.dodirot(dec,inc,D,I) out_d=[drot,irot] out.append(out_d) return out
def ifishrot(k=20,n=100,Dec=0,Inc=90): """ Generates Fisher distributed unit vectors from a specified distribution using the pmag.py fshdev and dodirot functions Parameters ---------- k kappa precision parameter (default is 20) n number of vectors to determine (default is 100) Dec mean declination of data set (default is 0) Inc mean inclination of data set (default is 90) """ directions=[] for data in range(n): dec,inc=pmag.fshdev(k) drot,irot=pmag.dodirot(dec,inc,Dec,Inc) directions.append([drot,irot,1.]) return directions
def main(): """ NAME EI.py [command line options] DESCRIPTION Finds bootstrap confidence bounds on Elongation and Inclination data SYNTAX EI.py [command line options] OPTIONS -h prints help message and quits -f FILE specifies input file -p do parametric bootstrap INPUT dec/inc pairs OUTPUT makes a plot of the E/I pair and bootstrapped confidence bounds along with the E/I trend predicted by the TK03 field model prints out: Io (mean inclination), I_lower and I_upper are 95% confidence bounds on inclination Eo (elongation), E_lower and E_upper are 95% confidence bounds on elongation Edec,Einc are the elongation direction """ par=0 if '-h' in sys.argv: print main.__doc__ sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') file=open(sys.argv[ind+1],'rU') if '-p' in sys.argv: par=1 rseed,nb,data=10,5000,[] upper,lower=int(round(.975*nb)),int(round(.025*nb)) Es,Is=[],[] PLTS={'eq':1,'ei':2} pmagplotlib.plot_init(PLTS['eq'],5,5) pmagplotlib.plot_init(PLTS['ei'],5,5) # poly_tab= [ 3.07448925e-06, -3.49555831e-04, -1.46990847e-02, 2.90905483e+00] poly_new= [ 3.15976125e-06, -3.52459817e-04, -1.46641090e-02, 2.89538539e+00] # poly_cp88= [ 5.34558576e-06, -7.70922659e-04, 5.18529685e-03, 2.90941351e+00] # poly_qc96= [ 7.08210133e-06, -8.79536536e-04, 1.09625547e-03, 2.92513660e+00] # poly_cj98=[ 6.56675431e-06, -7.91823539e-04, -1.08211350e-03, 2.80557710e+00] # poly_tk03_g20= [ 4.96757685e-06, -6.02256097e-04, -5.96103272e-03, 2.84227449e+00] # poly_tk03_g30= [ 7.82525963e-06, -1.39781724e-03, 4.47187092e-02, 2.54637535e+00] # poly_gr99_g=[ 1.24362063e-07, -1.69383384e-04, -4.24479223e-03, 2.59257437e+00] # poly_gr99_e=[ 1.26348154e-07, 2.01691452e-04, -4.99142308e-02, 3.69461060e+00] E_EI,E_tab,E_new,E_cp88,E_cj98,E_qc96,E_tk03_g20=[],[],[],[],[],[],[] E_tk03_g30,E_gr99_g,E_gr99_e=[],[],[] I2=range(0,90,5) for inc in I2: E_new.append(EI(inc,poly_new)) # use the polynomial from Tauxe et al. (2008) pmagplotlib.plotEI(PLTS['ei'],E_new,I2,1) if '-f' in sys.argv: random.seed(rseed) for line in file.readlines(): rec=line.split() dec=float(rec[0]) inc=float(rec[1]) if par==1: if len(rec)==4: N=(int(rec[2])) # append n K=float(rec[3]) # append k rec=[dec,inc,N,K] data.append(rec) else: rec=[dec,inc] data.append(rec) pmagplotlib.plotEQ(PLTS['eq'],data,'Data') ppars=pmag.doprinc(data) n=ppars["N"] Io=ppars['inc'] Edec=ppars['Edir'][0] Einc=ppars['Edir'][1] Eo=(ppars['tau2']/ppars['tau3']) b=0 print 'doing bootstrap - be patient' while b<nb: bdata=[] for j in range(n): boot=random.randint(0,n-1) random.jumpahead(rseed) if par==1: DIs=[] D,I,N,K=data[boot][0],data[boot][1],data[boot][2],data[boot][3] for k in range(N): dec,inc=pmag.fshdev(K) drot,irot=pmag.dodirot(dec,inc,D,I) DIs.append([drot,irot]) fpars=pmag.fisher_mean(DIs) bdata.append([fpars['dec'],fpars['inc'],1.]) # replace data[boot] with parametric dec,inc else: bdata.append(data[boot]) ppars=pmag.doprinc(bdata) Is.append(ppars['inc']) Es.append(ppars['tau2']/ppars['tau3']) b+=1 if b%100==0:print b Is.sort() Es.sort() x,std=pmag.gausspars(Es) stderr=std/math.sqrt(len(data)) pmagplotlib.plotX(PLTS['ei'],Io,Eo,Is[lower],Is[upper],Es[lower],Es[upper],'b-') # pmagplotlib.plotX(PLTS['ei'],Io,Eo,Is[lower],Is[upper],Eo-stderr,Eo+stderr,'b-') print 'Io, Eo, I_lower, I_upper, E_lower, E_upper, Edec, Einc' print '%7.1f %4.2f %7.1f %7.1f %4.2f %4.2f %7.1f %7.1f' %(Io,Eo,Is[lower],Is[upper],Es[lower],Es[upper], Edec,Einc) # print '%7.1f %4.2f %7.1f %7.1f %4.2f %4.2f' %(Io,Eo,Is[lower],Is[upper],Eo-stderr,Eo+stderr) pmagplotlib.drawFIGS(PLTS) files,fmt={},'svg' for key in PLTS.keys(): files[key]=key+'.'+fmt ans=raw_input(" S[a]ve to save plot, [q]uit without saving: ") if ans=="a": pmagplotlib.saveP(PLTS,files)
def main(): """ NAME foldtest.py DESCRIPTION does a fold test (Tauxe, 2010) on data INPUT FORMAT dec inc dip_direction dip SYNTAX foldtest.py [command line options] OPTIONS -h prints help message and quits -f FILE file with input data -F FILE for confidence bounds on fold test -u ANGLE (circular standard deviation) for uncertainty on bedding poles -b MIN MAX bounds for quick search of percent untilting [default is -10 to 150%] -n NB number of bootstrap samples [default is 1000] -fmt FMT, specify format - default is svg OUTPUT PLOTS Geographic: is an equal area projection of the input data in original coordinates Stratigraphic: is an equal area projection of the input data in tilt adjusted coordinates % Untilting: The dashed (red) curves are representative plots of maximum eigenvalue (tau_1) as a function of untilting The solid line is the cumulative distribution of the % Untilting required to maximize tau for all the bootstrapped data sets. The dashed vertical lines are 95% confidence bounds on the % untilting that yields the most clustered result (maximum tau_1). Command line: prints out the bootstrapped iterations and finally the confidence bounds on optimum untilting. If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated If the 95% conf bounds include 100, then a post-tilt magnetization is indicated If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is possible as is vertical axis rotation or other pathologies Geographic: is an equal area projection of the input data in OPTIONAL OUTPUT FILE: The output file has the % untilting within the 95% confidence bounds nd the number of bootstrap samples """ kappa=0 fmt='svg' nb=1000 # number of bootstraps min,max=-10,150 if '-h' in sys.argv: # check if help is needed print main.__doc__ sys.exit() # graceful quit if '-F' in sys.argv: ind=sys.argv.index('-F') outfile=open(sys.argv[ind+1],'w') else: outfile="" if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] DIDDs=numpy.loadtxt(file) else: print main.__doc__ sys.exit() if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-b' in sys.argv: ind=sys.argv.index('-b') min=float(sys.argv[ind+1]) max=float(sys.argv[ind+2]) if '-n' in sys.argv: ind=sys.argv.index('-n') nb=int(sys.argv[ind+1]) if '-u' in sys.argv: ind=sys.argv.index('-u') csd=float(sys.argv[ind+1]) kappa=(81./csd)**2 # # get to work # PLTS={'geo':1,'strat':2,'taus':3} # make plot dictionary pmagplotlib.plot_init(PLTS['geo'],5,5) pmagplotlib.plot_init(PLTS['strat'],5,5) pmagplotlib.plot_init(PLTS['taus'],5,5) pmagplotlib.plotEQ(PLTS['geo'],DIDDs,'Geographic') D,I=pmag.dotilt_V(DIDDs) TCs=numpy.array([D,I]).transpose() pmagplotlib.plotEQ(PLTS['strat'],TCs,'Stratigraphic') pmagplotlib.drawFIGS(PLTS) Percs=range(min,max) Cdf,Untilt=[],[] pylab.figure(num=PLTS['taus']) print 'doing ',nb,' iterations...please be patient.....' for n in range(nb): # do bootstrap data sets - plot first 25 as dashed red line if n%50==0:print n Taus=[] # set up lists for taus PDs=pmag.pseudo(DIDDs) if kappa!=0: for k in range(len(PDs)): d,i=pmag.fshdev(kappa) dipdir,dip=pmag.dodirot(d,i,PDs[k][2],PDs[k][3]) PDs[k][2]=dipdir PDs[k][3]=dip for perc in Percs: tilt=numpy.array([1.,1.,1.,0.01*perc]) D,I=pmag.dotilt_V(PDs*tilt) TCs=numpy.array([D,I]).transpose() ppars=pmag.doprinc(TCs) # get principal directions Taus.append(ppars['tau1']) if n<25:pylab.plot(Percs,Taus,'r--') Untilt.append(Percs[Taus.index(numpy.max(Taus))]) # tilt that gives maximum tau Cdf.append(float(n)/float(nb)) pylab.plot(Percs,Taus,'k') pylab.xlabel('% Untilting') pylab.ylabel('tau_1 (red), CDF (green)') Untilt.sort() # now for CDF of tilt of maximum tau pylab.plot(Untilt,Cdf,'g') lower=int(.025*nb) upper=int(.975*nb) pylab.axvline(x=Untilt[lower],ymin=0,ymax=1,linewidth=1,linestyle='--') pylab.axvline(x=Untilt[upper],ymin=0,ymax=1,linewidth=1,linestyle='--') tit= '%i - %i %s'%(Untilt[lower],Untilt[upper],'Percent Unfolding') print tit print 'range of all bootstrap samples: ', Untilt[0], ' - ', Untilt[-1] pylab.title(tit) outstring= '%i - %i; %i\n'%(Untilt[lower],Untilt[upper],nb) if outfile!="":outfile.write(outstring) pmagplotlib.drawFIGS(PLTS) ans= raw_input('S[a]ve all figures, <Return> to quit ') if ans!='a': print "Good bye" sys.exit() else: files={} for key in PLTS.keys(): files[key]=('foldtest_'+'%s'%(key.strip()[:2])+'.'+fmt) pmagplotlib.saveP(PLTS,files)
def main(): """ NAME watsonsV.py DESCRIPTION calculates Watson's V statistic from input files INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX watsonsV.py [command line options] OPTIONS -h prints help message and quits -f FILE (with optional second) -f2 FILE (second file) -ant, flip antipodal directions to opposite direction in first file if only one file or flip all in second, if two files -P (don't save or show plot) -sav save figure and quit silently -fmt [png,svg,eps,pdf,jpg] format for saved figure OUTPUT Watson's V and the Monte Carlo Critical Value Vc. in plot, V is solid and Vc is dashed. """ Flip=0 show,plot=1,0 fmt='svg' file2="" if '-h' in sys.argv: # check if help is needed print main.__doc__ sys.exit() # graceful quit if '-ant' in sys.argv: Flip=1 if '-sav' in sys.argv: show,plot=0,1 # don't display, but do save plot if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-P' in sys.argv: show=0 # don't display or save plot if '-f' in sys.argv: ind=sys.argv.index('-f') file1=sys.argv[ind+1] data=numpy.loadtxt(file1).transpose() D1=numpy.array([data[0],data[1]]).transpose() else: print "-f is required" print main.__doc__ sys.exit() if '-f2' in sys.argv: ind=sys.argv.index('-f2') file2=sys.argv[ind+1] data2=numpy.loadtxt(file2).transpose() D2=numpy.array([data2[0],data2[1]]).transpose() if Flip==1: D2,D=pmag.flip(D2) # D2 are now flipped if len(D2)!=0: if len(D)!=0: D2=numpy.concatenate(D,D2) # put all in D2 elif len(D)!=0: D2=D else: print 'length of second file is zero' sys.exit() elif Flip==1:D2,D1=pmag.flip(D1) # peel out antipodal directions, put in D2 # counter,NumSims=0,5000 # # first calculate the fisher means and cartesian coordinates of each set of Directions # pars_1=pmag.fisher_mean(D1) pars_2=pmag.fisher_mean(D2) # # get V statistic for these # V=pmag.vfunc(pars_1,pars_2) # # do monte carlo simulation of datasets with same kappas, but common mean # Vp=[] # set of Vs from simulations if show==1:print "Doing ",NumSims," simulations" for k in range(NumSims): counter+=1 if counter==50: if show==1:print k+1 counter=0 Dirp=[] # get a set of N1 fisher distributed vectors with k1, calculate fisher stats for i in range(pars_1["n"]): Dirp.append(pmag.fshdev(pars_1["k"])) pars_p1=pmag.fisher_mean(Dirp) # get a set of N2 fisher distributed vectors with k2, calculate fisher stats Dirp=[] for i in range(pars_2["n"]): Dirp.append(pmag.fshdev(pars_2["k"])) pars_p2=pmag.fisher_mean(Dirp) # get the V for these Vk=pmag.vfunc(pars_p1,pars_p2) Vp.append(Vk) # # sort the Vs, get Vcrit (95th one) # Vp.sort() k=int(.95*NumSims) if show==1: print "Watson's V, Vcrit: " print ' %10.1f %10.1f'%(V,Vp[k]) if show==1 or plot==1: CDF={'cdf':1} pmagplotlib.plot_init(CDF['cdf'],5,5) pmagplotlib.plotCDF(CDF['cdf'],Vp,"Watson's V",'r',"") pmagplotlib.plotVs(CDF['cdf'],[V],'g','-') pmagplotlib.plotVs(CDF['cdf'],[Vp[k]],'b','--') if plot==0:pmagplotlib.drawFIGS(CDF) files={} if file2!="": files['cdf']='WatsonsV_'+file1+'_'+file2+'.'+fmt else: files['cdf']='WatsonsV_'+file1+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['cdf']='Cumulative Distribution' CDF = pmagplotlib.addBorders(CDF,titles,black,purple) pmagplotlib.saveP(CDF,files) elif plot==0: ans=raw_input(" S[a]ve to save plot, [q]uit without saving: ") if ans=="a": pmagplotlib.saveP(CDF,files) if plot==1: # save and quit silently pmagplotlib.saveP(CDF,files)
def watson_common_mean(Data1,Data2,NumSims=5000,plot='no'): """ Conduct a Watson V test for a common mean on two declination, inclination data sets This function calculates Watson's V statistic from input files through Monte Carlo simulation in order to test whether two populations of directional data could have been drawn from a common mean. The critical angle between the two sample mean directions and the corresponding McFadden and McElhinny (1990) classification is printed. Required Arguments ---------- Data1 : a list of directional data [dec,inc] Data2 : a list of directional data [dec,inc] Optional Arguments ---------- NumSims : number of Monte Carlo simulations (default is 5000) plot : the default is no plot ('no'). Putting 'yes' will the plot the CDF from the Monte Carlo simulations. """ pars_1=pmag.fisher_mean(Data1) pars_2=pmag.fisher_mean(Data2) cart_1=pmag.dir2cart([pars_1["dec"],pars_1["inc"],pars_1["r"]]) cart_2=pmag.dir2cart([pars_2['dec'],pars_2['inc'],pars_2["r"]]) Sw=pars_1['k']*pars_1['r']+pars_2['k']*pars_2['r'] # k1*r1+k2*r2 xhat_1=pars_1['k']*cart_1[0]+pars_2['k']*cart_2[0] # k1*x1+k2*x2 xhat_2=pars_1['k']*cart_1[1]+pars_2['k']*cart_2[1] # k1*y1+k2*y2 xhat_3=pars_1['k']*cart_1[2]+pars_2['k']*cart_2[2] # k1*z1+k2*z2 Rw=np.sqrt(xhat_1**2+xhat_2**2+xhat_3**2) V=2*(Sw-Rw) # keep weighted sum for later when determining the "critical angle" # let's save it as Sr (notation of McFadden and McElhinny, 1990) Sr=Sw # do monte carlo simulation of datasets with same kappas as data, # but a common mean counter=0 Vp=[] # set of Vs from simulations for k in range(NumSims): # get a set of N1 fisher distributed vectors with k1, # calculate fisher stats Dirp=[] for i in range(pars_1["n"]): Dirp.append(pmag.fshdev(pars_1["k"])) pars_p1=pmag.fisher_mean(Dirp) # get a set of N2 fisher distributed vectors with k2, # calculate fisher stats Dirp=[] for i in range(pars_2["n"]): Dirp.append(pmag.fshdev(pars_2["k"])) pars_p2=pmag.fisher_mean(Dirp) # get the V for these Vk=pmag.vfunc(pars_p1,pars_p2) Vp.append(Vk) # sort the Vs, get Vcrit (95th percentile one) Vp.sort() k=int(.95*NumSims) Vcrit=Vp[k] # equation 18 of McFadden and McElhinny, 1990 calculates the critical # value of R (Rwc) Rwc=Sr-(Vcrit/2) # following equation 19 of McFadden and McElhinny (1990) the critical # angle is calculated. If the observed angle (also calculated below) # between the data set means exceeds the critical angle the hypothesis # of a common mean direction may be rejected at the 95% confidence # level. The critical angle is simply a different way to present # Watson's V parameter so it makes sense to use the Watson V parameter # in comparison with the critical value of V for considering the test # results. What calculating the critical angle allows for is the # classification of McFadden and McElhinny (1990) to be made # for data sets that are consistent with sharing a common mean. k1=pars_1['k'] k2=pars_2['k'] R1=pars_1['r'] R2=pars_2['r'] critical_angle=np.degrees(np.arccos(((Rwc**2)-((k1*R1)**2) -((k2*R2)**2))/ (2*k1*R1*k2*R2))) D1=(pars_1['dec'],pars_1['inc']) D2=(pars_2['dec'],pars_2['inc']) angle=pmag.angle(D1,D2) print "Results of Watson V test: " print "" print "Watson's V: " '%.1f' %(V) print "Critical value of V: " '%.1f' %(Vcrit) if V<Vcrit: print '"Pass": Since V is less than Vcrit, the null hypothesis' print 'that the two populations are drawn from distributions' print 'that share a common mean direction can not be rejected.' elif V>Vcrit: print '"Fail": Since V is greater than Vcrit, the two means can' print 'be distinguished at the 95% confidence level.' print "" print "M&M1990 classification:" print "" print "Angle between data set means: " '%.1f'%(angle) print "Critical angle for M&M1990: " '%.1f'%(critical_angle) if V>Vcrit: print "" elif V<Vcrit: if critical_angle<5: print "The McFadden and McElhinny (1990) classification for" print "this test is: 'A'" elif critical_angle<10: print "The McFadden and McElhinny (1990) classification for" print "this test is: 'B'" elif critical_angle<20: print "The McFadden and McElhinny (1990) classification for" print "this test is: 'C'" else: print "The McFadden and McElhinny (1990) classification for" print "this test is: 'INDETERMINATE;" if plot=='yes': CDF={'cdf':1} #pmagplotlib.plot_init(CDF['cdf'],5,5) p1 = pmagplotlib.plotCDF(CDF['cdf'],Vp,"Watson's V",'r',"") p2 = pmagplotlib.plotVs(CDF['cdf'],[V],'g','-') p3 = pmagplotlib.plotVs(CDF['cdf'],[Vp[k]],'b','--') pmagplotlib.drawFIGS(CDF)
def main(): """ NAME revtest_MM1990.py DESCRIPTION calculates Watson's V statistic from input files through Monte Carlo simulation in order to test whether normal and reversed populations could have been drawn from a common mean (equivalent to watsonV.py). Also provides the critical angle between the two sample mean directions and the corresponding McFadden and McElhinny (1990) classification. INPUT FORMAT takes dec/inc as first two columns in two space delimited files (one file for normal directions, one file for reversed directions). SYNTAX revtest_MM1990.py [command line options] OPTIONS -h prints help message and quits -f FILE -f2 FILE -P (don't plot the Watson V cdf) OUTPUT Watson's V between the two populations and the Monte Carlo Critical Value Vc. M&M1990 angle, critical angle and classification Plot of Watson's V CDF from Monte Carlo simulation (red line), V is solid and Vc is dashed. """ D1, D2 = [], [] plot = 1 Flip = 1 if "-h" in sys.argv: # check if help is needed print main.__doc__ sys.exit() # graceful quit if "-P" in sys.argv: plot = 0 if "-f" in sys.argv: ind = sys.argv.index("-f") file1 = sys.argv[ind + 1] f1 = open(file1, "rU") for line in f1.readlines(): rec = line.split() Dec, Inc = float(rec[0]), float(rec[1]) D1.append([Dec, Inc, 1.0]) f1.close() if "-f2" in sys.argv: ind = sys.argv.index("-f2") file2 = sys.argv[ind + 1] f2 = open(file2, "rU") print "be patient, your computer is doing 5000 simulations..." for line in f2.readlines(): rec = line.split() Dec, Inc = float(rec[0]), float(rec[1]) D2.append([Dec, Inc, 1.0]) f2.close() # take the antipode for the directions in file 2 D2_flip = [] for rec in D2: d, i = (rec[0] - 180.0) % 360.0, -rec[1] D2_flip.append([d, i, 1.0]) pars_1 = pmag.fisher_mean(D1) pars_2 = pmag.fisher_mean(D2_flip) cart_1 = pmag.dir2cart([pars_1["dec"], pars_1["inc"], pars_1["r"]]) cart_2 = pmag.dir2cart([pars_2["dec"], pars_2["inc"], pars_2["r"]]) Sw = pars_1["k"] * pars_1["r"] + pars_2["k"] * pars_2["r"] # k1*r1+k2*r2 xhat_1 = pars_1["k"] * cart_1[0] + pars_2["k"] * cart_2[0] # k1*x1+k2*x2 xhat_2 = pars_1["k"] * cart_1[1] + pars_2["k"] * cart_2[1] # k1*y1+k2*y2 xhat_3 = pars_1["k"] * cart_1[2] + pars_2["k"] * cart_2[2] # k1*z1+k2*z2 Rw = numpy.sqrt(xhat_1 ** 2 + xhat_2 ** 2 + xhat_3 ** 2) V = 2 * (Sw - Rw) # # keep weighted sum for later when determining the "critical angle" let's save it as Sr (notation of McFadden and McElhinny, 1990) # Sr = Sw # # do monte carlo simulation of datasets with same kappas, but common mean # counter, NumSims = 0, 5000 Vp = [] # set of Vs from simulations for k in range(NumSims): # # get a set of N1 fisher distributed vectors with k1, calculate fisher stats # Dirp = [] for i in range(pars_1["n"]): Dirp.append(pmag.fshdev(pars_1["k"])) pars_p1 = pmag.fisher_mean(Dirp) # # get a set of N2 fisher distributed vectors with k2, calculate fisher stats # Dirp = [] for i in range(pars_2["n"]): Dirp.append(pmag.fshdev(pars_2["k"])) pars_p2 = pmag.fisher_mean(Dirp) # # get the V for these # Vk = pmag.vfunc(pars_p1, pars_p2) Vp.append(Vk) # # sort the Vs, get Vcrit (95th percentile one) # Vp.sort() k = int(0.95 * NumSims) Vcrit = Vp[k] # # equation 18 of McFadden and McElhinny, 1990 calculates the critical value of R (Rwc) # Rwc = Sr - (Vcrit / 2) # # following equation 19 of McFadden and McElhinny (1990) the critical angle is calculated. # k1 = pars_1["k"] k2 = pars_2["k"] R1 = pars_1["r"] R2 = pars_2["r"] critical_angle = numpy.degrees( numpy.arccos(((Rwc ** 2) - ((k1 * R1) ** 2) - ((k2 * R2) ** 2)) / (2 * k1 * R1 * k2 * R2)) ) D1_mean = (pars_1["dec"], pars_1["inc"]) D2_mean = (pars_2["dec"], pars_2["inc"]) angle = pmag.angle(D1_mean, D2_mean) # # print the results of the test # print "" print "Results of Watson V test: " print "" print "Watson's V: " "%.1f" % (V) print "Critical value of V: " "%.1f" % (Vcrit) if V < Vcrit: print '"Pass": Since V is less than Vcrit, the null hypothesis that the two populations are drawn from distributions that share a common mean direction (antipodal to one another) cannot be rejected.' elif V > Vcrit: print '"Fail": Since V is greater than Vcrit, the two means can be distinguished at the 95% confidence level.' print "" print "M&M1990 classification:" print "" print "Angle between data set means: " "%.1f" % (angle) print "Critical angle of M&M1990: " "%.1f" % (critical_angle) if V > Vcrit: print "" elif V < Vcrit: if critical_angle < 5: print "The McFadden and McElhinny (1990) classification for this test is: 'A'" elif critical_angle < 10: print "The McFadden and McElhinny (1990) classification for this test is: 'B'" elif critical_angle < 20: print "The McFadden and McElhinny (1990) classification for this test is: 'C'" else: print "The McFadden and McElhinny (1990) classification for this test is: 'INDETERMINATE;" if plot == 1: CDF = {"cdf": 1} pmagplotlib.plot_init(CDF["cdf"], 5, 5) p1 = pmagplotlib.plotCDF(CDF["cdf"], Vp, "Watson's V", "r", "") p2 = pmagplotlib.plotVs(CDF["cdf"], [V], "g", "-") p3 = pmagplotlib.plotVs(CDF["cdf"], [Vp[k]], "b", "--") pmagplotlib.drawFIGS(CDF) files, fmt = {}, "svg" if file2 != "": files["cdf"] = "WatsonsV_" + file1 + "_" + file2 + "." + fmt else: files["cdf"] = "WatsonsV_" + file1 + "." + fmt if pmagplotlib.isServer: black = "#000000" purple = "#800080" titles = {} titles["cdf"] = "Cumulative Distribution" CDF = pmagplotlib.addBorders(CDF, titles, black, purple) pmagplotlib.saveP(CDF, files) else: ans = raw_input(" S[a]ve to save plot, [q]uit without saving: ") if ans == "a": pmagplotlib.saveP(CDF, files)
def watson_common_mean(Data1, Data2, NumSims=5000, plot='no'): """ Conduct a Watson V test for a common mean on two declination, inclination data sets This function calculates Watson's V statistic from input files through Monte Carlo simulation in order to test whether two populations of directional data could have been drawn from a common mean. The critical angle between the two sample mean directions and the corresponding McFadden and McElhinny (1990) classification is printed. Required Arguments ---------- Data1 : a list of directional data [dec,inc] Data2 : a list of directional data [dec,inc] Optional Arguments ---------- NumSims : number of Monte Carlo simulations (default is 5000) plot : the default is no plot ('no'). Putting 'yes' will the plot the CDF from the Monte Carlo simulations. """ pars_1 = pmag.fisher_mean(Data1) pars_2 = pmag.fisher_mean(Data2) cart_1 = pmag.dir2cart([pars_1["dec"], pars_1["inc"], pars_1["r"]]) cart_2 = pmag.dir2cart([pars_2['dec'], pars_2['inc'], pars_2["r"]]) Sw = pars_1['k'] * pars_1['r'] + pars_2['k'] * pars_2['r'] # k1*r1+k2*r2 xhat_1 = pars_1['k'] * cart_1[0] + pars_2['k'] * cart_2[0] # k1*x1+k2*x2 xhat_2 = pars_1['k'] * cart_1[1] + pars_2['k'] * cart_2[1] # k1*y1+k2*y2 xhat_3 = pars_1['k'] * cart_1[2] + pars_2['k'] * cart_2[2] # k1*z1+k2*z2 Rw = np.sqrt(xhat_1**2 + xhat_2**2 + xhat_3**2) V = 2 * (Sw - Rw) # keep weighted sum for later when determining the "critical angle" # let's save it as Sr (notation of McFadden and McElhinny, 1990) Sr = Sw # do monte carlo simulation of datasets with same kappas as data, # but a common mean counter = 0 Vp = [] # set of Vs from simulations for k in range(NumSims): # get a set of N1 fisher distributed vectors with k1, # calculate fisher stats Dirp = [] for i in range(pars_1["n"]): Dirp.append(pmag.fshdev(pars_1["k"])) pars_p1 = pmag.fisher_mean(Dirp) # get a set of N2 fisher distributed vectors with k2, # calculate fisher stats Dirp = [] for i in range(pars_2["n"]): Dirp.append(pmag.fshdev(pars_2["k"])) pars_p2 = pmag.fisher_mean(Dirp) # get the V for these Vk = pmag.vfunc(pars_p1, pars_p2) Vp.append(Vk) # sort the Vs, get Vcrit (95th percentile one) Vp.sort() k = int(.95 * NumSims) Vcrit = Vp[k] # equation 18 of McFadden and McElhinny, 1990 calculates the critical # value of R (Rwc) Rwc = Sr - (Vcrit / 2) # following equation 19 of McFadden and McElhinny (1990) the critical # angle is calculated. If the observed angle (also calculated below) # between the data set means exceeds the critical angle the hypothesis # of a common mean direction may be rejected at the 95% confidence # level. The critical angle is simply a different way to present # Watson's V parameter so it makes sense to use the Watson V parameter # in comparison with the critical value of V for considering the test # results. What calculating the critical angle allows for is the # classification of McFadden and McElhinny (1990) to be made # for data sets that are consistent with sharing a common mean. k1 = pars_1['k'] k2 = pars_2['k'] R1 = pars_1['r'] R2 = pars_2['r'] critical_angle = np.degrees( np.arccos(((Rwc**2) - ((k1 * R1)**2) - ((k2 * R2)**2)) / (2 * k1 * R1 * k2 * R2))) D1 = (pars_1['dec'], pars_1['inc']) D2 = (pars_2['dec'], pars_2['inc']) angle = pmag.angle(D1, D2) print "Results of Watson V test: " print "" print "Watson's V: " '%.1f' % (V) print "Critical value of V: " '%.1f' % (Vcrit) if V < Vcrit: print '"Pass": Since V is less than Vcrit, the null hypothesis' print 'that the two populations are drawn from distributions' print 'that share a common mean direction can not be rejected.' elif V > Vcrit: print '"Fail": Since V is greater than Vcrit, the two means can' print 'be distinguished at the 95% confidence level.' print "" print "M&M1990 classification:" print "" print "Angle between data set means: " '%.1f' % (angle) print "Critical angle for M&M1990: " '%.1f' % (critical_angle) if V > Vcrit: print "" elif V < Vcrit: if critical_angle < 5: print "The McFadden and McElhinny (1990) classification for" print "this test is: 'A'" elif critical_angle < 10: print "The McFadden and McElhinny (1990) classification for" print "this test is: 'B'" elif critical_angle < 20: print "The McFadden and McElhinny (1990) classification for" print "this test is: 'C'" else: print "The McFadden and McElhinny (1990) classification for" print "this test is: 'INDETERMINATE;" if plot == 'yes': CDF = {'cdf': 1} #pmagplotlib.plot_init(CDF['cdf'],5,5) p1 = pmagplotlib.plotCDF(CDF['cdf'], Vp, "Watson's V", 'r', "") p2 = pmagplotlib.plotVs(CDF['cdf'], [V], 'g', '-') p3 = pmagplotlib.plotVs(CDF['cdf'], [Vp[k]], 'b', '--') pmagplotlib.drawFIGS(CDF)
def spitout(kappa): dec,inc= pmag.fshdev(kappa) # send kappa to fshdev print '%7.1f %7.1f ' % (dec,inc) return
def main(): """ NAME watsonsV.py DESCRIPTION calculates Watson's V statistic from input files INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX watsonsV.py [command line options] OPTIONS -h prints help message and quits -f FILE (with optional second) -f2 FILE (second file) -ant, flip antipodal directions in FILE to opposite direction -P (don't plot) OUTPUT Watson's V and the Monte Carlo Critical Value Vc. in plot, V is solid and Vc is dashed. """ D1,D2=[],[] Flip=0 plot=1 if '-h' in sys.argv: # check if help is needed print main.__doc__ sys.exit() # graceful quit if '-ant' in sys.argv: Flip=1 if '-P' in sys.argv: plot=0 if '-f' in sys.argv: ind=sys.argv.index('-f') file1=sys.argv[ind+1] f=open(file1,'rU') for line in f.readlines(): rec=line.split() Dec,Inc=float(rec[0]),float(rec[1]) D1.append([Dec,Inc,1.]) f.close() if '-f2' in sys.argv: ind=sys.argv.index('-f2') file2=sys.argv[ind+1] f=open(file2,'rU') for line in f.readlines(): if '\t' in line: rec=line.split('\t') # split each line on space to get records else: rec=line.split() # split each line on space to get records Dec,Inc=float(rec[0]),float(rec[1]) if Flip==0: D2.append([Dec,Inc,1.]) else: D1.append([Dec,Inc,1.]) f.close() if Flip==1: D1,D2=pmag.flip(D1) # counter,NumSims=0,5000 # # first calculate the fisher means and cartesian coordinates of each set of Directions # pars_1=pmag.fisher_mean(D1) pars_2=pmag.fisher_mean(D2) # # get V statistic for these # V=pmag.vfunc(pars_1,pars_2) # # do monte carlo simulation of datasets with same kappas, but common mean # Vp=[] # set of Vs from simulations if plot==1:print "Doing ",NumSims," simulations" for k in range(NumSims): counter+=1 if counter==50: if plot==1:print k+1 counter=0 Dirp=[] # get a set of N1 fisher distributed vectors with k1, calculate fisher stats for i in range(pars_1["n"]): Dirp.append(pmag.fshdev(pars_1["k"])) pars_p1=pmag.fisher_mean(Dirp) # get a set of N2 fisher distributed vectors with k2, calculate fisher stats Dirp=[] for i in range(pars_2["n"]): Dirp.append(pmag.fshdev(pars_2["k"])) pars_p2=pmag.fisher_mean(Dirp) # get the V for these Vk=pmag.vfunc(pars_p1,pars_p2) Vp.append(Vk) # # sort the Vs, get Vcrit (95th one) # Vp.sort() k=int(.95*NumSims) print "Watson's V, Vcrit: " print ' %10.1f %10.1f'%(V,Vp[k]) if plot==1: CDF={'cdf':1} pmagplotlib.plot_init(CDF['cdf'],5,5) pmagplotlib.plotCDF(CDF['cdf'],Vp,"Watson's V",'r',"") pmagplotlib.plotVs(CDF['cdf'],[V],'g','-') pmagplotlib.plotVs(CDF['cdf'],[Vp[k]],'b','--') pmagplotlib.drawFIGS(CDF) files,fmt={},'svg' if file2!="": files['cdf']='WatsonsV_'+file1+'_'+file2+'.'+fmt else: files['cdf']='WatsonsV_'+file1+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['cdf']='Cumulative Distribution' CDF = pmagplotlib.addBorders(CDF,titles,black,purple) pmagplotlib.saveP(CDF,files) else: ans=raw_input(" S[a]ve to save plot, [q]uit without saving: ") if ans=="a": pmagplotlib.saveP(CDF,files)
def main(): """ NAME foldtest.py DESCRIPTION does a fold test (Tauxe, 2008) on data INPUT FORMAT dec inc dip_direction dip SYNTAX foldtest.py [command line options] OPTIONS -h prints help message and quits -f FILE -u ANGLE (circular standard deviation) for uncertainty on bedding poles -b MIN MAX bounds for quick search of percent untilting [default is -10 to 150%] -n NB number of bootstrap samples [default is 1000] OUTPUT Geographic: is an equal area projection of the input data in original coordinates Stratigraphic: is an equal area projection of the input data in tilt adjusted coordinates % Untilting: The dashed (red) curves are representative plots of maximum eigenvalue (tau_1) as a function of untilting The solid line is the cumulative distribution of the % Untilting required to maximize tau for all the bootstrapped data sets. The dashed vertical lines are 95% confidence bounds on the % untilting that yields the most clustered result (maximum tau_1). Command line: prints out the bootstrapped iterations and finally the confidence bounds on optimum untilting. If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated If the 95% conf bounds include 100, then a post-tilt magnetization is indicated If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is possible as is vertical axis rotation or other pathologies """ kappa=0 nb=1000 # number of bootstraps min,max=-10,150 if '-h' in sys.argv: # check if help is needed print main.__doc__ sys.exit() # graceful quit if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'rU') data=f.readlines() else: print main.__doc__ sys.exit() if '-b' in sys.argv: ind=sys.argv.index('-b') min=float(sys.argv[ind+1]) max=float(sys.argv[ind+2]) if '-n' in sys.argv: ind=sys.argv.index('-n') nb=int(sys.argv[ind+1]) if '-u' in sys.argv: ind=sys.argv.index('-u') csd=float(sys.argv[ind+1]) kappa=(81./csd)**2 # # get to work # PLTS={'geo':1,'strat':2,'taus':3} # make plot dictionary pmagplotlib.plot_init(PLTS['geo'],5,5) pmagplotlib.plot_init(PLTS['strat'],5,5) pmagplotlib.plot_init(PLTS['taus'],5,5) DIDDs= [] # set up list for dec inc dip_direction, dip for line in data: # read in the data from standard input rec=line.split() # split each line on space to get records DIDDs.append([float(rec[0]),float(rec[1]),float(rec[2]),float(rec[3])]) pmagplotlib.plotEQ(PLTS['geo'],DIDDs,'Geographic') TCs=[] for k in range(len(DIDDs)): drot,irot=pmag.dotilt(DIDDs[k][0],DIDDs[k][1],DIDDs[k][2],DIDDs[k][3]) TCs.append([drot,irot,1.]) pmagplotlib.plotEQ(PLTS['strat'],TCs,'Stratigraphic') Percs=range(min,max) Cdf,Untilt=[],[] pylab.figure(num=PLTS['taus']) print 'doing ',nb,' iterations...please be patient.....' for n in range(nb): # do bootstrap data sets - plot first 25 as dashed red line if n%50==0:print n Taus=[] # set up lists for taus PDs=pmag.pseudo(DIDDs) if kappa!=0: for k in range(len(PDs)): d,i=pmag.fshdev(kappa) dipdir,dip=pmag.dodirot(d,i,PDs[k][2],PDs[k][3]) PDs[k][2]=dipdir PDs[k][3]=dip for perc in Percs: tilt=0.01*perc TCs=[] for k in range(len(PDs)): drot,irot=pmag.dotilt(PDs[k][0],PDs[k][1],PDs[k][2],tilt*PDs[k][3]) TCs.append([drot,irot,1.]) ppars=pmag.doprinc(TCs) # get principal directions Taus.append(ppars['tau1']) if n<25:pylab.plot(Percs,Taus,'r--') Untilt.append(Percs[Taus.index(numpy.max(Taus))]) # tilt that gives maximum tau Cdf.append(float(n)/float(nb)) pylab.plot(Percs,Taus,'k') pylab.xlabel('% Untilting') pylab.ylabel('tau_1 (red), CDF (green)') Untilt.sort() # now for CDF of tilt of maximum tau pylab.plot(Untilt,Cdf,'g') lower=int(.025*nb) upper=int(.975*nb) pylab.axvline(x=Untilt[lower],ymin=0,ymax=1,linewidth=1,linestyle='--') pylab.axvline(x=Untilt[upper],ymin=0,ymax=1,linewidth=1,linestyle='--') tit= '%i - %i %s'%(Untilt[lower],Untilt[upper],'Percent Unfolding') print tit print 'range of all bootstrap samples: ', Untilt[0], ' - ', Untilt[-1] pylab.title(tit) try: raw_input('Return to save all figures, cntl-d to quit\n') except: print "Good bye" sys.exit() files={} for key in PLTS.keys(): files[key]=('fold_'+'%s'%(key.strip()[:2])+'.svg') pmagplotlib.saveP(PLTS,files)
def main(): """ NAME foldtest_magic.py DESCRIPTION does a fold test (Tauxe, 2010) on data INPUT FORMAT pmag_specimens format file, er_samples.txt format file (for bedding) SYNTAX foldtest_magic.py [command line options] OPTIONS -h prints help message and quits -f pmag_sites formatted file [default is pmag_sites.txt] -fsa er_samples formatted file [default is er_samples.txt] -exc use pmag_criteria.txt to set acceptance criteria -n NB, set number of bootstraps, default is 1000 -b MIN, MAX, set bounds for untilting, default is -10, 150 -fmt FMT, specify format - default is svg OUTPUT Geographic: is an equal area projection of the input data in original coordinates Stratigraphic: is an equal area projection of the input data in tilt adjusted coordinates % Untilting: The dashed (red) curves are representative plots of maximum eigenvalue (tau_1) as a function of untilting The solid line is the cumulative distribution of the % Untilting required to maximize tau for all the bootstrapped data sets. The dashed vertical lines are 95% confidence bounds on the % untilting that yields the most clustered result (maximum tau_1). Command line: prints out the bootstrapped iterations and finally the confidence bounds on optimum untilting. If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated If the 95% conf bounds include 100, then a post-tilt magnetization is indicated If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is possible as is vertical axis rotation or other pathologies """ kappa=0 nb=1000 # number of bootstraps min,max=-10,150 dir_path='.' infile,orfile='pmag_sites.txt','er_samples.txt' critfile='pmag_criteria.txt' fmt='svg' if '-WD' in sys.argv: ind=sys.argv.index('-WD') dir_path=sys.argv[ind+1] if '-h' in sys.argv: # check if help is needed print main.__doc__ sys.exit() # graceful quit if '-n' in sys.argv: ind=sys.argv.index('-n') nb=int(sys.argv[ind+1]) if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-b' in sys.argv: ind=sys.argv.index('-b') min=int(sys.argv[ind+1]) max=int(sys.argv[ind+2]) if '-f' in sys.argv: ind=sys.argv.index('-f') infile=sys.argv[ind+1] if '-fsa' in sys.argv: ind=sys.argv.index('-fsa') orfile=sys.argv[ind+1] orfile=dir_path+'/'+orfile infile=dir_path+'/'+infile critfile=dir_path+'/'+critfile data,file_type=pmag.magic_read(infile) ordata,file_type=pmag.magic_read(orfile) if '-exc' in sys.argv: crits,file_type=pmag.magic_read(critfile) for crit in crits: if crit['pmag_criteria_code']=="DE-SITE": SiteCrit=crit break # get to work # PLTS={'geo':1,'strat':2,'taus':3} # make plot dictionary pmagplotlib.plot_init(PLTS['geo'],5,5) pmagplotlib.plot_init(PLTS['strat'],5,5) pmagplotlib.plot_init(PLTS['taus'],5,5) GEOrecs=pmag.get_dictitem(data,'site_tilt_correction','0','T') if len(GEOrecs)>0: # have some geographic data DIDDs= [] # set up list for dec inc dip_direction, dip for rec in GEOrecs: # parse data dip,dip_dir=0,-1 Dec=float(rec['site_dec']) Inc=float(rec['site_inc']) orecs=pmag.get_dictitem(ordata,'er_site_name',rec['er_site_name'],'T') if len(orecs)>0: if orecs[0]['sample_bed_dip_direction']!="":dip_dir=float(orecs[0]['sample_bed_dip_direction']) if orecs[0]['sample_bed_dip']!="":dip=float(orecs[0]['sample_bed_dip']) if dip!=0 and dip_dir!=-1: if '-exc' in sys.argv: keep=1 for key in SiteCrit.keys(): if 'site' in key and SiteCrit[key]!="" and rec[key]!="" and key!='site_alpha95': if float(rec[key])<float(SiteCrit[key]): keep=0 print rec['er_site_name'],key,rec[key] if key=='site_alpha95' and SiteCrit[key]!="" and rec[key]!="": if float(rec[key])>float(SiteCrit[key]): keep=0 if keep==1: DIDDs.append([Dec,Inc,dip_dir,dip]) else: DIDDs.append([Dec,Inc,dip_dir,dip]) else: print 'no geographic directional data found' sys.exit() pmagplotlib.plotEQ(PLTS['geo'],DIDDs,'Geographic') data=numpy.array(DIDDs) D,I=pmag.dotilt_V(data) TCs=numpy.array([D,I]).transpose() pmagplotlib.plotEQ(PLTS['strat'],TCs,'Stratigraphic') pmagplotlib.drawFIGS(PLTS) Percs=range(min,max) Cdf,Untilt=[],[] pylab.figure(num=PLTS['taus']) print 'doing ',nb,' iterations...please be patient.....' for n in range(nb): # do bootstrap data sets - plot first 25 as dashed red line if n%50==0:print n Taus=[] # set up lists for taus PDs=pmag.pseudo(DIDDs) if kappa!=0: for k in range(len(PDs)): d,i=pmag.fshdev(kappa) dipdir,dip=pmag.dodirot(d,i,PDs[k][2],PDs[k][3]) PDs[k][2]=dipdir PDs[k][3]=dip for perc in Percs: tilt=numpy.array([1.,1.,1.,0.01*perc]) D,I=pmag.dotilt_V(PDs*tilt) TCs=numpy.array([D,I]).transpose() ppars=pmag.doprinc(TCs) # get principal directions Taus.append(ppars['tau1']) if n<25:pylab.plot(Percs,Taus,'r--') Untilt.append(Percs[Taus.index(numpy.max(Taus))]) # tilt that gives maximum tau Cdf.append(float(n)/float(nb)) pylab.plot(Percs,Taus,'k') pylab.xlabel('% Untilting') pylab.ylabel('tau_1 (red), CDF (green)') Untilt.sort() # now for CDF of tilt of maximum tau pylab.plot(Untilt,Cdf,'g') lower=int(.025*nb) upper=int(.975*nb) pylab.axvline(x=Untilt[lower],ymin=0,ymax=1,linewidth=1,linestyle='--') pylab.axvline(x=Untilt[upper],ymin=0,ymax=1,linewidth=1,linestyle='--') tit= '%i - %i %s'%(Untilt[lower],Untilt[upper],'Percent Unfolding') print tit pylab.title(tit) pmagplotlib.drawFIGS(PLTS) ans= raw_input('S[a]ve all figures, <Return> to quit \n ') if ans!='a': print "Good bye" sys.exit() files={} for key in PLTS.keys(): files[key]=('foldtest_'+'%s'%(key.strip()[:2])+'.'+fmt) pmagplotlib.saveP(PLTS,files)
#!/usr/bin/env python import pmag, matplotlib, math matplotlib.use("TkAgg") import pylab k = 29.2 Dels, A95s, CSDs, Ns = [], [], [], range(4, 31) DIs = [] for i in range(31): dec, inc = pmag.fshdev(k) DIs.append([dec, inc]) pars = pmag.fisher_mean(DIs) pDIs = [] for i in range(3): pDIs.append(DIs[i]) for n in Ns: pDIs.append(DIs[n]) fpars = pmag.fisher_mean(pDIs) A95s.append(fpars['alpha95']) CSDs.append(fpars['csd']) Dels.append((180. / math.pi) * math.acos(fpars['r'] / float(n))) pylab.plot(Ns, A95s, 'ro') pylab.plot(Ns, A95s, 'r-') pylab.plot(Ns, CSDs, 'bs') pylab.plot(Ns, CSDs, 'b-') pylab.plot(Ns, Dels, 'g^') pylab.plot(Ns, Dels, 'g-') pylab.axhline(pars['csd'], color='k') pylab.show() raw_input()
def common_dir_MM90(dir1,dir2,NumSims=5000,plot='no'): dir1['r']=get_R(dir1) dir2['r']=get_R(dir2) #largely based on iWatsonV routine of Swanson-Hyell in IPMag cart_1=pmag.dir2cart([dir1["dec"],dir1["inc"],dir1["r"]]) cart_2=pmag.dir2cart([dir2['dec'],dir2['inc'],dir2["r"]]) Sw=dir1['k']*dir1['r']+dir2['k']*dir2['r'] # k1*r1+k2*r2 xhat_1=dir1['k']*cart_1[0]+dir2['k']*cart_2[0] # k1*x1+k2*x2 xhat_2=dir1['k']*cart_1[1]+dir2['k']*cart_2[1] # k1*y1+k2*y2 xhat_3=dir1['k']*cart_1[2]+dir2['k']*cart_2[2] # k1*z1+k2*z2 Rw=np.sqrt(xhat_1**2+xhat_2**2+xhat_3**2) V=2*(Sw-Rw) # keep weighted sum for later when determining the "critical angle" # let's save it as Sr (notation of McFadden and McElhinny, 1990) Sr=Sw # do monte carlo simulation of datasets with same kappas as data, # but a common mean counter=0 Vp=[] # set of Vs from simulations for k in range(NumSims): # get a set of N1 fisher distributed vectors with k1, # calculate fisher stats Dirp=[] for i in range(int(dir1["n"])): Dirp.append(pmag.fshdev(dir1["k"])) pars_p1=pmag.fisher_mean(Dirp) # get a set of N2 fisher distributed vectors with k2, # calculate fisher stats Dirp=[] for i in range(int(dir2["n"])): Dirp.append(pmag.fshdev(dir2["k"])) pars_p2=pmag.fisher_mean(Dirp) # get the V for these Vk=pmag.vfunc(pars_p1,pars_p2) Vp.append(Vk) # sort the Vs, get Vcrit (95th percentile one) Vp.sort() k=int(.95*NumSims) Vcrit=Vp[k] # equation 18 of McFadden and McElhinny, 1990 calculates the critical # value of R (Rwc) Rwc=Sr-(Vcrit/2) # following equation 19 of McFadden and McElhinny (1990) the critical # angle is calculated. If the observed angle (also calculated below) # between the data set means exceeds the critical angle the hypothesis # of a common mean direction may be rejected at the 95% confidence # level. The critical angle is simply a different way to present # Watson's V parameter so it makes sense to use the Watson V parameter # in comparison with the critical value of V for considering the test # results. What calculating the critical angle allows for is the # classification of McFadden and McElhinny (1990) to be made # for data sets that are consistent with sharing a common mean. k1=dir1['k'] k2=dir2['k'] R1=dir1['r'] R2=dir2['r'] critical_angle=np.degrees(np.arccos(((Rwc**2)-((k1*R1)**2) -((k2*R2)**2))/ (2*k1*R1*k2*R2))) D1=(dir1['dec'],dir1['inc']) D2=(dir2['dec'],dir2['inc']) angle=pmag.angle(D1,D2) if V<Vcrit: outcome='Pass' if critical_angle<5: MM90class='A' elif critical_angle<10: MM90class='B' elif critical_angle<20: MM90class='C' else: MM90class='INDETERMINATE' else: outcome='Fail' MM90class='FAIL' result=pd.Series([outcome,V,Vcrit,angle[0],critical_angle,MM90class], index=['Outcome','VWatson','Vcrit','angle','critangle','MM90class']) if plot=='yes': CDF={'cdf':1} #pmagplotlib.plot_init(CDF['cdf'],5,5) p1 = pmagplotlib.plotCDF(CDF['cdf'],Vp,"Watson's V",'r',"") p2 = pmagplotlib.plotVs(CDF['cdf'],[V],'g','-') p3 = pmagplotlib.plotVs(CDF['cdf'],[Vp[k]],'b','--') pmagplotlib.drawFIGS(CDF) return result