def main(): """ NAME eqarea_magic.py DESCRIPTION makes equal area projections from declination/inclination data SYNTAX eqarea_magic.py [command line options] INPUT takes magic formatted sites, samples, specimens, or measurements OPTIONS -h prints help message and quits -f FILE: specify input magic format file from magic, default='sites.txt' supported types=[measurements, specimens, samples, sites] -fsp FILE: specify specimen file name, (required if you want to plot measurements by sample) default='specimens.txt' -fsa FILE: specify sample file name, (required if you want to plot specimens by site) default='samples.txt' -fsi FILE: specify site file name, default='sites.txt' -obj OBJ: specify level of plot [all, sit, sam, spc], default is all -crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted default is geographic, unspecified assumed geographic -fmt [svg,png,jpg] format for output plots -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors -c plot as colour contour -sav save plot and quit quietly NOTE all: entire file; sit: site; sam: sample; spc: specimen """ # initialize some default variables FIG = {} # plot dictionary FIG['eqarea'] = 1 # eqarea is figure 1 plotE = 0 plt = 0 # default to not plotting verbose = pmagplotlib.verbose # extract arguments from sys.argv if '-h' in sys.argv: print(main.__doc__) sys.exit() dir_path = pmag.get_named_arg_from_sys("-WD", default_val=".") pmagplotlib.plot_init(FIG['eqarea'],5,5) in_file = pmag.get_named_arg_from_sys("-f", default_val="sites.txt") in_file = pmag.resolve_file_name(in_file, dir_path) if "-WD" not in sys.argv: dir_path = os.path.split(in_file)[0] #full_in_file = os.path.join(dir_path, in_file) plot_by = pmag.get_named_arg_from_sys("-obj", default_val="all").lower() spec_file = pmag.get_named_arg_from_sys("-fsp", default_val="specimens.txt") samp_file = pmag.get_named_arg_from_sys("-fsa", default_val="samples.txt") site_file = pmag.get_named_arg_from_sys("-fsi", default_val="sites.txt") if plot_by == 'all': plot_key = 'all' elif plot_by == 'sit': plot_key = 'site' elif plot_by == 'sam': plot_key = 'sample' elif plot_by == 'spc': plot_key = 'specimen' else: plot_by = 'all' plot_key = 'all' if '-c' in sys.argv: contour = 1 else: contour = 0 if '-sav' in sys.argv: plt = 1 verbose = 0 if '-ell' in sys.argv: plotE = 1 ind = sys.argv.index('-ell') ell_type = sys.argv[ind+1] ell_type = pmag.get_named_arg_from_sys("-ell", "F") dist = ell_type.upper() # if dist type is unrecognized, use Fisher if dist not in ['F', 'K', 'B', 'BE', 'BV']: dist = 'F' if dist == "BV": FIG['bdirs'] = 2 pmagplotlib.plot_init(FIG['bdirs'],5,5) crd = pmag.get_named_arg_from_sys("-crd", default_val="g") if crd == "s": coord = "-1" elif crd == "t": coord = "100" else: coord = "0" fmt = pmag.get_named_arg_from_sys("-fmt", "svg") dec_key = 'dir_dec' inc_key = 'dir_inc' tilt_key = 'dir_tilt_correction' #Dir_type_keys=['','site_direction_type','sample_direction_type','specimen_direction_type'] # fnames = {"specimens": spec_file, "samples": samp_file, 'sites': site_file} contribution = nb.Contribution(dir_path, custom_filenames=fnames, single_file=in_file) try: contribution.propagate_location_to_samples() contribution.propagate_location_to_specimens() contribution.propagate_location_to_measurements() except KeyError as ex: pass # the object that contains the DataFrame + useful helper methods: table_name = list(contribution.tables.keys())[0] data_container = contribution.tables[table_name] # the actual DataFrame: data = data_container.df if plot_key != "all" and plot_key not in data.columns: print("-E- You can't plot by {} with the data provided".format(plot_key)) return # add tilt key into DataFrame columns if it isn't there already if tilt_key not in data.columns: data.loc[:, tilt_key] = None if verbose: print(len(data), ' records read from ', in_file) # find desired dec,inc data: dir_type_key = '' # # get plotlist if not plotting all records # plotlist=[] if plot_key != "all": # return all where plot_key is not blank if plot_key not in data.columns: print('Can\'t plot by "{}". That header is not in infile: {}'.format(plot_key, in_file)) return plots = data[data[plot_key].notnull()] plotlist = plots[plot_key].unique() # grab unique values else: plotlist.append('All') for plot in plotlist: if verbose: print(plot) if plot == 'All': # plot everything at once plot_data = data else: # pull out only partial data plot_data = data[data[plot_key] == plot] DIblock = [] GCblock = [] # SLblock, SPblock = [], [] title = plot mode = 1 k = 0 if dec_key not in plot_data.columns: print("-W- No dec/inc data") continue # get all records where dec & inc values exist plot_data = plot_data[plot_data[dec_key].notnull() & plot_data[inc_key].notnull()] if plot_data.empty: continue # this sorting out is done in get_di_bock #if coord == '0': # geographic, use records with no tilt key (or tilt_key 0) # cond1 = plot_data[tilt_key].fillna('') == coord # cond2 = plot_data[tilt_key].isnull() # plot_data = plot_data[cond1 | cond2] #else: # not geographic coordinates, use only records with correct tilt_key # plot_data = plot_data[plot_data[tilt_key] == coord] # get metadata for naming the plot file locations = data_container.get_name('location', df_slice=plot_data) site = data_container.get_name('site', df_slice=plot_data) sample = data_container.get_name('sample', df_slice=plot_data) specimen = data_container.get_name('specimen', df_slice=plot_data) # make sure method_codes is in plot_data if 'method_codes' not in plot_data.columns: plot_data['method_codes'] = '' # get data blocks DIblock = data_container.get_di_block(df_slice=plot_data, tilt_corr=coord, excl=['DE-BFP']) #SLblock = [[ind, row['method_codes']] for ind, row in plot_data.iterrows()] # get great circles great_circle_data = data_container.get_records_for_code('DE-BFP', incl=True, use_slice=True, sli=plot_data) if len(great_circle_data) > 0: gc_cond = great_circle_data[tilt_key] == coord GCblock = [[float(row[dec_key]), float(row[inc_key])] for ind, row in great_circle_data[gc_cond].iterrows()] #SPblock = [[ind, row['method_codes']] for ind, row in great_circle_data[gc_cond].iterrows()] if len(DIblock) > 0: if contour == 0: pmagplotlib.plotEQ(FIG['eqarea'], DIblock, title) else: pmagplotlib.plotEQcont(FIG['eqarea'], DIblock) else: pmagplotlib.plotNET(FIG['eqarea']) if len(GCblock)>0: for rec in GCblock: pmagplotlib.plotC(FIG['eqarea'], rec, 90., 'g') if len(DIblock) == 0 and len(GCblock) == 0: if verbose: print("no records for plotting") continue #sys.exit() if plotE == 1: ppars = pmag.doprinc(DIblock) # get principal directions nDIs, rDIs, npars, rpars = [], [], [], [] for rec in DIblock: angle=pmag.angle([rec[0],rec[1]],[ppars['dec'],ppars['inc']]) if angle>90.: rDIs.append(rec) else: nDIs.append(rec) if dist=='B': # do on whole dataset etitle="Bingham confidence ellipse" bpars=pmag.dobingham(DIblock) for key in list(bpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(bpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(bpars[key])) npars.append(bpars['dec']) npars.append(bpars['inc']) npars.append(bpars['Zeta']) npars.append(bpars['Zdec']) npars.append(bpars['Zinc']) npars.append(bpars['Eta']) npars.append(bpars['Edec']) npars.append(bpars['Einc']) if dist=='F': etitle="Fisher confidence cone" if len(nDIs)>2: fpars=pmag.fisher_mean(nDIs) for key in list(fpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(fpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(fpars[key])) mode+=1 npars.append(fpars['dec']) npars.append(fpars['inc']) npars.append(fpars['alpha95']) # Beta npars.append(fpars['dec']) isign=old_div(abs(fpars['inc']),fpars['inc']) npars.append(fpars['inc']-isign*90.) #Beta inc npars.append(fpars['alpha95']) # gamma npars.append(fpars['dec']+90.) # Beta dec npars.append(0.) #Beta inc if len(rDIs)>2: fpars=pmag.fisher_mean(rDIs) if verbose: print("mode ",mode) for key in list(fpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(fpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(fpars[key])) mode+=1 rpars.append(fpars['dec']) rpars.append(fpars['inc']) rpars.append(fpars['alpha95']) # Beta rpars.append(fpars['dec']) isign=old_div(abs(fpars['inc']),fpars['inc']) rpars.append(fpars['inc']-isign*90.) #Beta inc rpars.append(fpars['alpha95']) # gamma rpars.append(fpars['dec']+90.) # Beta dec rpars.append(0.) #Beta inc if dist=='K': etitle="Kent confidence ellipse" if len(nDIs)>3: kpars=pmag.dokent(nDIs,len(nDIs)) if verbose: print("mode ",mode) for key in list(kpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(kpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(kpars[key])) mode+=1 npars.append(kpars['dec']) npars.append(kpars['inc']) npars.append(kpars['Zeta']) npars.append(kpars['Zdec']) npars.append(kpars['Zinc']) npars.append(kpars['Eta']) npars.append(kpars['Edec']) npars.append(kpars['Einc']) if len(rDIs)>3: kpars=pmag.dokent(rDIs,len(rDIs)) if verbose: print("mode ",mode) for key in list(kpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(kpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(kpars[key])) mode+=1 rpars.append(kpars['dec']) rpars.append(kpars['inc']) rpars.append(kpars['Zeta']) rpars.append(kpars['Zdec']) rpars.append(kpars['Zinc']) rpars.append(kpars['Eta']) rpars.append(kpars['Edec']) rpars.append(kpars['Einc']) else: # assume bootstrap if dist=='BE': if len(nDIs)>5: BnDIs=pmag.di_boot(nDIs) Bkpars=pmag.dokent(BnDIs,1.) if verbose: print("mode ",mode) for key in list(Bkpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(Bkpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(Bkpars[key])) mode+=1 npars.append(Bkpars['dec']) npars.append(Bkpars['inc']) npars.append(Bkpars['Zeta']) npars.append(Bkpars['Zdec']) npars.append(Bkpars['Zinc']) npars.append(Bkpars['Eta']) npars.append(Bkpars['Edec']) npars.append(Bkpars['Einc']) if len(rDIs)>5: BrDIs=pmag.di_boot(rDIs) Bkpars=pmag.dokent(BrDIs,1.) if verbose: print("mode ",mode) for key in list(Bkpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(Bkpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(Bkpars[key])) mode+=1 rpars.append(Bkpars['dec']) rpars.append(Bkpars['inc']) rpars.append(Bkpars['Zeta']) rpars.append(Bkpars['Zdec']) rpars.append(Bkpars['Zinc']) rpars.append(Bkpars['Eta']) rpars.append(Bkpars['Edec']) rpars.append(Bkpars['Einc']) etitle="Bootstrapped confidence ellipse" elif dist=='BV': sym={'lower':['o','c'],'upper':['o','g'],'size':3,'edgecolor':'face'} if len(nDIs)>5: BnDIs=pmag.di_boot(nDIs) pmagplotlib.plotEQsym(FIG['bdirs'],BnDIs,'Bootstrapped Eigenvectors', sym) if len(rDIs)>5: BrDIs=pmag.di_boot(rDIs) if len(nDIs)>5: # plot on existing plots pmagplotlib.plotDIsym(FIG['bdirs'],BrDIs,sym) else: pmagplotlib.plotEQ(FIG['bdirs'],BrDIs,'Bootstrapped Eigenvectors') if dist=='B': if len(nDIs)> 3 or len(rDIs)>3: pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],npars,0) elif len(nDIs)>3 and dist!='BV': pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],npars,0) if len(rDIs)>3: pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],rpars,0) elif len(rDIs)>3 and dist!='BV': pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],rpars,0) for key in list(FIG.keys()): files = {} filename = pmag.get_named_arg_from_sys('-fname') if filename: # use provided filename filename+= '.' + fmt elif pmagplotlib.isServer: # use server plot naming convention filename='LO:_'+locations+'_SI:_'+site+'_SA:_'+sample+'_SP:_'+specimen+'_CO:_'+crd+'_TY:_'+key+'_.'+fmt elif plot_key == 'all': filename = 'all' if 'location' in plot_data.columns: locs = plot_data['location'].unique() loc_string = "_".join([loc.replace(' ', '_') for loc in locs]) filename += "_" + loc_string filename += "_" + crd + "_" + key filename += ".{}".format(fmt) else: # use more readable naming convention filename = '' # fix this if plot_by is location , for example use_names = {'location': [locations], 'site': [locations, site], 'sample': [locations, site, sample], 'specimen': [locations, site, sample, specimen]} use = use_names[plot_key] use.extend([crd, key]) for item in use: #[locations, site, sample, specimen, crd, key]: if item: item = item.replace(' ', '_') filename += item + '_' if filename.endswith('_'): filename = filename[:-1] filename += ".{}".format(fmt) files[key]=filename if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['eq']='Equal Area Plot' FIG = pmagplotlib.addBorders(FIG,titles,black,purple) pmagplotlib.saveP(FIG,files) if plt: pmagplotlib.saveP(FIG,files) continue if verbose: pmagplotlib.drawFIGS(FIG) ans=input(" S[a]ve to save plot, [q]uit, Return to continue: ") if ans == "q": sys.exit() if ans == "a": pmagplotlib.saveP(FIG,files) continue
def main(): """ NAME eqarea_magic.py DESCRIPTION makes equal area projections from declination/inclination data SYNTAX eqarea_magic.py [command line options] INPUT takes magic formatted pmag_results, pmag_sites, pmag_samples or pmag_specimens OPTIONS -h prints help message and quits -f FILE: specify input magic format file from magic,default='pmag_results.txt' supported types=[magic_measurements,pmag_specimens, pmag_samples, pmag_sites, pmag_results, magic_web] -obj OBJ: specify level of plot [all, sit, sam, spc], default is all -crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted default is geographic, unspecified assumed geographic -fmt [svg,png,jpg] format for output plots -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors -c plot as colour contour -sav save plot and quit quietly NOTE all: entire file; sit: site; sam: sample; spc: specimen """ FIG={} # plot dictionary FIG['eqarea']=1 # eqarea is figure 1 in_file,plot_key,coord,crd='pmag_results.txt','all',"0",'g' plotE,contour=0,0 dir_path='.' fmt='svg' verbose=pmagplotlib.verbose if '-h' in sys.argv: print main.__doc__ sys.exit() if '-WD' in sys.argv: ind=sys.argv.index('-WD') dir_path=sys.argv[ind+1] pmagplotlib.plot_init(FIG['eqarea'],5,5) if '-f' in sys.argv: ind=sys.argv.index("-f") in_file=dir_path+"/"+sys.argv[ind+1] if '-obj' in sys.argv: ind=sys.argv.index('-obj') plot_by=sys.argv[ind+1] if plot_by=='all':plot_key='all' if plot_by=='sit':plot_key='er_site_name' if plot_by=='sam':plot_key='er_sample_name' if plot_by=='spc':plot_key='er_specimen_name' if '-c' in sys.argv: contour=1 plt=0 if '-sav' in sys.argv: plt=1 verbose=0 if '-ell' in sys.argv: plotE=1 ind=sys.argv.index('-ell') ell_type=sys.argv[ind+1] if ell_type=='F':dist='F' if ell_type=='K':dist='K' if ell_type=='B':dist='B' if ell_type=='Be':dist='BE' if ell_type=='Bv': dist='BV' FIG['bdirs']=2 pmagplotlib.plot_init(FIG['bdirs'],5,5) if '-crd' in sys.argv: ind=sys.argv.index("-crd") crd=sys.argv[ind+1] if crd=='s':coord="-1" if crd=='g':coord="0" if crd=='t':coord="100" if '-fmt' in sys.argv: ind=sys.argv.index("-fmt") fmt=sys.argv[ind+1] Dec_keys=['site_dec','sample_dec','specimen_dec','measurement_dec','average_dec','none'] Inc_keys=['site_inc','sample_inc','specimen_inc','measurement_inc','average_inc','none'] Tilt_keys=['tilt_correction','site_tilt_correction','sample_tilt_correction','specimen_tilt_correction','none'] Dir_type_keys=['','site_direction_type','sample_direction_type','specimen_direction_type'] Name_keys=['er_specimen_name','er_sample_name','er_site_name','pmag_result_name'] data,file_type=pmag.magic_read(in_file) if file_type=='pmag_results' and plot_key!="all":plot_key=plot_key+'s' # need plural for results table if verbose: print len(data),' records read from ',in_file # # # find desired dec,inc data: # dir_type_key='' # # get plotlist if not plotting all records # plotlist=[] if plot_key!="all": plots=pmag.get_dictitem(data,plot_key,'','F') for rec in plots: if rec[plot_key] not in plotlist: plotlist.append(rec[plot_key]) plotlist.sort() else: plotlist.append('All') for plot in plotlist: #if verbose: print plot DIblock=[] GCblock=[] SLblock,SPblock=[],[] title=plot mode=1 dec_key,inc_key,tilt_key,name_key,k="","","","",0 if plot!="All": odata=pmag.get_dictitem(data,plot_key,plot,'T') else: odata=data # data for this obj for dec_key in Dec_keys: Decs=pmag.get_dictitem(odata,dec_key,'','F') # get all records with this dec_key not blank if len(Decs)>0: break for inc_key in Inc_keys: Incs=pmag.get_dictitem(Decs,inc_key,'','F') # get all records with this inc_key not blank if len(Incs)>0: break for tilt_key in Tilt_keys: if tilt_key in Incs[0].keys(): break # find the tilt_key for these records if tilt_key=='none': # no tilt key in data, need to fix this with fake data which will be unknown tilt tilt_key='tilt_correction' for rec in Incs:rec[tilt_key]='' cdata=pmag.get_dictitem(Incs,tilt_key,coord,'T') # get all records matching specified coordinate system if coord=='0': # geographic udata=pmag.get_dictitem(Incs,tilt_key,'','T') # get all the blank records - assume geographic if len(cdata)==0: crd='' if len(udata)>0: for d in udata:cdata.append(d) crd=crd+'u' for name_key in Name_keys: Names=pmag.get_dictitem(cdata,name_key,'','F') # get all records with this name_key not blank if len(Names)>0: break for dir_type_key in Dir_type_keys: Dirs=pmag.get_dictitem(cdata,dir_type_key,'','F') # get all records with this direction type if len(Dirs)>0: break if dir_type_key=="":dir_type_key='direction_type' locations,site,sample,specimen="","","","" for rec in cdata: # pick out the data if 'er_location_name' in rec.keys() and rec['er_location_name']!="" and rec['er_location_name'] not in locations:locations=locations+rec['er_location_name'].replace("/","")+"_" if 'er_location_names' in rec.keys() and rec['er_location_names']!="": locs=rec['er_location_names'].split(':') for loc in locs: if loc not in locations:locations=locations+loc.replace("/","")+'_' if plot_key=='er_site_name' or plot_key=='er_sample_name' or plot_key=='er_specimen_name': site=rec['er_site_name'] if plot_key=='er_sample_name' or plot_key=='er_specimen_name': sample=rec['er_sample_name'] if plot_key=='er_specimen_name': specimen=rec['er_specimen_name'] if plot_key=='er_site_names' or plot_key=='er_sample_names' or plot_key=='er_specimen_names': site=rec['er_site_names'] if plot_key=='er_sample_names' or plot_key=='er_specimen_names': sample=rec['er_sample_names'] if plot_key=='er_specimen_names': specimen=rec['er_specimen_names'] if dir_type_key not in rec.keys() or rec[dir_type_key]=="":rec[dir_type_key]='l' if 'magic_method_codes' not in rec.keys():rec['magic_method_codes']="" DIblock.append([float(rec[dec_key]),float(rec[inc_key])]) SLblock.append([rec[name_key],rec['magic_method_codes']]) if rec[tilt_key]==coord and rec[dir_type_key]!='l' and rec[dec_key]!="" and rec[inc_key]!="": GCblock.append([float(rec[dec_key]),float(rec[inc_key])]) SPblock.append([rec[name_key],rec['magic_method_codes']]) if len(DIblock)==0 and len(GCblock)==0: if verbose: print "no records for plotting" sys.exit() if verbose: for k in range(len(SLblock)): print '%s %s %7.1f %7.1f'%(SLblock[k][0],SLblock[k][1],DIblock[k][0],DIblock[k][1]) for k in range(len(SPblock)): print '%s %s %7.1f %7.1f'%(SPblock[k][0],SPblock[k][1],GCblock[k][0],GCblock[k][1]) if len(DIblock)>0: if contour==0: pmagplotlib.plotEQ(FIG['eqarea'],DIblock,title) else: pmagplotlib.plotEQcont(FIG['eqarea'],DIblock) else: pmagplotlib.plotNET(FIG['eqarea']) if len(GCblock)>0: for rec in GCblock: pmagplotlib.plotC(FIG['eqarea'],rec,90.,'g') if plotE==1: ppars=pmag.doprinc(DIblock) # get principal directions nDIs,rDIs,npars,rpars=[],[],[],[] for rec in DIblock: angle=pmag.angle([rec[0],rec[1]],[ppars['dec'],ppars['inc']]) if angle>90.: rDIs.append(rec) else: nDIs.append(rec) if dist=='B': # do on whole dataset etitle="Bingham confidence ellipse" bpars=pmag.dobingham(DIblock) for key in bpars.keys(): if key!='n' and verbose:print " ",key, '%7.1f'%(bpars[key]) if key=='n' and verbose:print " ",key, ' %i'%(bpars[key]) npars.append(bpars['dec']) npars.append(bpars['inc']) npars.append(bpars['Zeta']) npars.append(bpars['Zdec']) npars.append(bpars['Zinc']) npars.append(bpars['Eta']) npars.append(bpars['Edec']) npars.append(bpars['Einc']) if dist=='F': etitle="Fisher confidence cone" if len(nDIs)>2: fpars=pmag.fisher_mean(nDIs) for key in fpars.keys(): if key!='n' and verbose:print " ",key, '%7.1f'%(fpars[key]) if key=='n' and verbose:print " ",key, ' %i'%(fpars[key]) mode+=1 npars.append(fpars['dec']) npars.append(fpars['inc']) npars.append(fpars['alpha95']) # Beta npars.append(fpars['dec']) isign=abs(fpars['inc'])/fpars['inc'] npars.append(fpars['inc']-isign*90.) #Beta inc npars.append(fpars['alpha95']) # gamma npars.append(fpars['dec']+90.) # Beta dec npars.append(0.) #Beta inc if len(rDIs)>2: fpars=pmag.fisher_mean(rDIs) if verbose:print "mode ",mode for key in fpars.keys(): if key!='n' and verbose:print " ",key, '%7.1f'%(fpars[key]) if key=='n' and verbose:print " ",key, ' %i'%(fpars[key]) mode+=1 rpars.append(fpars['dec']) rpars.append(fpars['inc']) rpars.append(fpars['alpha95']) # Beta rpars.append(fpars['dec']) isign=abs(fpars['inc'])/fpars['inc'] rpars.append(fpars['inc']-isign*90.) #Beta inc rpars.append(fpars['alpha95']) # gamma rpars.append(fpars['dec']+90.) # Beta dec rpars.append(0.) #Beta inc if dist=='K': etitle="Kent confidence ellipse" if len(nDIs)>3: kpars=pmag.dokent(nDIs,len(nDIs)) if verbose:print "mode ",mode for key in kpars.keys(): if key!='n' and verbose:print " ",key, '%7.1f'%(kpars[key]) if key=='n' and verbose:print " ",key, ' %i'%(kpars[key]) mode+=1 npars.append(kpars['dec']) npars.append(kpars['inc']) npars.append(kpars['Zeta']) npars.append(kpars['Zdec']) npars.append(kpars['Zinc']) npars.append(kpars['Eta']) npars.append(kpars['Edec']) npars.append(kpars['Einc']) if len(rDIs)>3: kpars=pmag.dokent(rDIs,len(rDIs)) if verbose:print "mode ",mode for key in kpars.keys(): if key!='n' and verbose:print " ",key, '%7.1f'%(kpars[key]) if key=='n' and verbose:print " ",key, ' %i'%(kpars[key]) mode+=1 rpars.append(kpars['dec']) rpars.append(kpars['inc']) rpars.append(kpars['Zeta']) rpars.append(kpars['Zdec']) rpars.append(kpars['Zinc']) rpars.append(kpars['Eta']) rpars.append(kpars['Edec']) rpars.append(kpars['Einc']) else: # assume bootstrap if dist=='BE': if len(nDIs)>5: BnDIs=pmag.di_boot(nDIs) Bkpars=pmag.dokent(BnDIs,1.) if verbose:print "mode ",mode for key in Bkpars.keys(): if key!='n' and verbose:print " ",key, '%7.1f'%(Bkpars[key]) if key=='n' and verbose:print " ",key, ' %i'%(Bkpars[key]) mode+=1 npars.append(Bkpars['dec']) npars.append(Bkpars['inc']) npars.append(Bkpars['Zeta']) npars.append(Bkpars['Zdec']) npars.append(Bkpars['Zinc']) npars.append(Bkpars['Eta']) npars.append(Bkpars['Edec']) npars.append(Bkpars['Einc']) if len(rDIs)>5: BrDIs=pmag.di_boot(rDIs) Bkpars=pmag.dokent(BrDIs,1.) if verbose:print "mode ",mode for key in Bkpars.keys(): if key!='n' and verbose:print " ",key, '%7.1f'%(Bkpars[key]) if key=='n' and verbose:print " ",key, ' %i'%(Bkpars[key]) mode+=1 rpars.append(Bkpars['dec']) rpars.append(Bkpars['inc']) rpars.append(Bkpars['Zeta']) rpars.append(Bkpars['Zdec']) rpars.append(Bkpars['Zinc']) rpars.append(Bkpars['Eta']) rpars.append(Bkpars['Edec']) rpars.append(Bkpars['Einc']) etitle="Bootstrapped confidence ellipse" elif dist=='BV': sym={'lower':['o','c'],'upper':['o','g'],'size':3,'edgecolor':'face'} if len(nDIs)>5: BnDIs=pmag.di_boot(nDIs) pmagplotlib.plotEQsym(FIG['bdirs'],BnDIs,'Bootstrapped Eigenvectors', sym) if len(rDIs)>5: BrDIs=pmag.di_boot(rDIs) if len(nDIs)>5: # plot on existing plots pmagplotlib.plotDIsym(FIG['bdirs'],BrDIs,sym) else: pmagplotlib.plotEQ(FIG['bdirs'],BrDIs,'Bootstrapped Eigenvectors') if dist=='B': if len(nDIs)> 3 or len(rDIs)>3: pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],npars,0) elif len(nDIs)>3 and dist!='BV': pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],npars,0) if len(rDIs)>3: pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],rpars,0) elif len(rDIs)>3 and dist!='BV': pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],rpars,0) if verbose:pmagplotlib.drawFIGS(FIG) # files={} locations=locations[:-1] for key in FIG.keys(): filename='LO:_'+locations+'_SI:_'+site+'_SA:_'+sample+'_SP:_'+specimen+'_CO:_'+crd+'_TY:_'+key+'_.'+fmt files[key]=filename if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['eq']='Equal Area Plot' FIG = pmagplotlib.addBorders(FIG,titles,black,purple) pmagplotlib.saveP(FIG,files) elif verbose: ans=raw_input(" S[a]ve to save plot, [q]uit, Return to continue: ") if ans=="q": sys.exit() if ans=="a": pmagplotlib.saveP(FIG,files) if plt: pmagplotlib.saveP(FIG,files)
def main(): """ NAME eqarea_magic.py DESCRIPTION makes equal area projections from declination/inclination data SYNTAX eqarea_magic.py [command line options] INPUT takes magic formatted sites, samples, specimens, or measurements OPTIONS -h prints help message and quits -f FILE: specify input magic format file from magic, default='sites.txt' supported types=[measurements, specimens, samples, sites] -fsp FILE: specify specimen file name, (required if you want to plot measurements by sample) default='specimens.txt' -fsa FILE: specify sample file name, (required if you want to plot specimens by site) default='samples.txt' -fsi FILE: specify site file name, default='sites.txt' -obj OBJ: specify level of plot [all, sit, sam, spc], default is all -crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted default is geographic, unspecified assumed geographic -fmt [svg,png,jpg] format for output plots -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors -c plot as colour contour -sav save plot and quit quietly NOTE all: entire file; sit: site; sam: sample; spc: specimen """ # initialize some default variables FIG = {} # plot dictionary FIG['eqarea'] = 1 # eqarea is figure 1 plotE = 0 plt = 0 # default to not plotting verbose = pmagplotlib.verbose # extract arguments from sys.argv if '-h' in sys.argv: print(main.__doc__) sys.exit() dir_path = pmag.get_named_arg_from_sys("-WD", default_val=os.getcwd()) pmagplotlib.plot_init(FIG['eqarea'],5,5) in_file = pmag.get_named_arg_from_sys("-f", default_val="sites.txt") full_in_file = os.path.join(dir_path, in_file) plot_by = pmag.get_named_arg_from_sys("-obj", default_val="all").lower() spec_file = pmag.get_named_arg_from_sys("-fsp", default_val="specimens.txt") samp_file = pmag.get_named_arg_from_sys("-fsa", default_val="samples.txt") site_file = pmag.get_named_arg_from_sys("-fsi", default_val="sites.txt") if plot_by == 'all': plot_key = 'all' elif plot_by == 'sit': plot_key = 'site' elif plot_by == 'sam': plot_key = 'sample' elif plot_by == 'spc': plot_key = 'specimen' else: plot_key = 'all' if '-c' in sys.argv: contour = 1 else: contour = 0 if '-sav' in sys.argv: plt = 1 verbose = 0 if '-ell' in sys.argv: plotE = 1 ind = sys.argv.index('-ell') ell_type = sys.argv[ind+1] ell_type = pmag.get_named_arg_from_sys("-ell", "F") dist = ell_type.upper() # if dist type is unrecognized, use Fisher if dist not in ['F', 'K', 'B', 'BE', 'BV']: dist = 'F' if dist == "BV": FIG['bdirs'] = 2 pmagplotlib.plot_init(FIG['bdirs'],5,5) crd = pmag.get_named_arg_from_sys("-crd", default_val="g") if crd == "s": coord = "-1" elif crd == "t": coord = "100" else: coord = "0" fmt = pmag.get_named_arg_from_sys("-fmt", "svg") dec_key = 'dir_dec' inc_key = 'dir_inc' tilt_key = 'dir_tilt_correction' #Dir_type_keys=['','site_direction_type','sample_direction_type','specimen_direction_type'] # fnames = {"specimens": spec_file, "samples": samp_file, 'sites': site_file} contribution = nb.Contribution(dir_path, custom_filenames=fnames, single_file=in_file) # the object that contains the DataFrame + useful helper methods: table_name = list(contribution.tables.keys())[0] data_container = contribution.tables[table_name] # the actual DataFrame: data = data_container.df # uses sample infile to add temporary site_name # column to the specimen table data_container = contribution.tables[table_name] data = data_container.df if (plot_key != "all") and (plot_key not in data.columns): contribution.propagate_location_to_measurements() contribution.propagate_location_to_specimens() # add tilt key into DataFrame columns if it isn't there already if tilt_key not in data.columns: data.loc[:, tilt_key] = None if verbose: print(len(data), ' records read from ', in_file) # find desired dec,inc data: dir_type_key = '' # # get plotlist if not plotting all records # plotlist=[] if plot_key != "all": # return all where plot_key is not blank if plot_key not in data.columns: print('Can\'t plot by "{}". That header is not in infile: {}'.format(plot_key, in_file)) return plots = data[data[plot_key].notnull()] plotlist = plots[plot_key].unique() # grab unique values else: plotlist.append('All') for plot in plotlist: if verbose: print(plot) if plot == 'All': # plot everything at once plot_data = data else: # pull out only partial data plot_data = data[data[plot_key] == plot] DIblock = [] GCblock = [] # SLblock, SPblock = [], [] title = plot mode = 1 k = 0 if dec_key not in plot_data.columns: print("-W- No dec/inc data") continue # get all records where dec & inc values exist plot_data = plot_data[plot_data[dec_key].notnull() & plot_data[inc_key].notnull()] if plot_data.empty: continue # this sorting out is done in get_di_bock #if coord == '0': # geographic, use records with no tilt key (or tilt_key 0) # cond1 = plot_data[tilt_key].fillna('') == coord # cond2 = plot_data[tilt_key].isnull() # plot_data = plot_data[cond1 | cond2] #else: # not geographic coordinates, use only records with correct tilt_key # plot_data = plot_data[plot_data[tilt_key] == coord] # get metadata for naming the plot file locations = data_container.get_name('location', df_slice=plot_data) site = data_container.get_name('site', df_slice=plot_data) sample = data_container.get_name('sample', df_slice=plot_data) specimen = data_container.get_name('specimen', df_slice=plot_data) # make sure method_codes is in plot_data if 'method_codes' not in plot_data.columns: plot_data['method_codes'] = '' # get data blocks DIblock = data_container.get_di_block(df_slice=plot_data, tilt_corr=coord, excl=['DE-BFP']) #SLblock = [[ind, row['method_codes']] for ind, row in plot_data.iterrows()] # get great circles great_circle_data = data_container.get_records_for_code('DE-BFP', incl=True, use_slice=True, sli=plot_data) if len(great_circle_data) > 0: gc_cond = great_circle_data[tilt_key] == coord GCblock = [[float(row[dec_key]), float(row[inc_key])] for ind, row in great_circle_data[gc_cond].iterrows()] #SPblock = [[ind, row['method_codes']] for ind, row in great_circle_data[gc_cond].iterrows()] if len(DIblock) > 0: if contour == 0: pmagplotlib.plotEQ(FIG['eqarea'], DIblock, title) else: pmagplotlib.plotEQcont(FIG['eqarea'], DIblock) else: pmagplotlib.plotNET(FIG['eqarea']) if len(GCblock)>0: for rec in GCblock: pmagplotlib.plotC(FIG['eqarea'], rec, 90., 'g') if len(DIblock) == 0 and len(GCblock) == 0: if verbose: print("no records for plotting") continue #sys.exit() if plotE == 1: ppars = pmag.doprinc(DIblock) # get principal directions nDIs, rDIs, npars, rpars = [], [], [], [] for rec in DIblock: angle=pmag.angle([rec[0],rec[1]],[ppars['dec'],ppars['inc']]) if angle>90.: rDIs.append(rec) else: nDIs.append(rec) if dist=='B': # do on whole dataset etitle="Bingham confidence ellipse" bpars=pmag.dobingham(DIblock) for key in list(bpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(bpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(bpars[key])) npars.append(bpars['dec']) npars.append(bpars['inc']) npars.append(bpars['Zeta']) npars.append(bpars['Zdec']) npars.append(bpars['Zinc']) npars.append(bpars['Eta']) npars.append(bpars['Edec']) npars.append(bpars['Einc']) if dist=='F': etitle="Fisher confidence cone" if len(nDIs)>2: fpars=pmag.fisher_mean(nDIs) for key in list(fpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(fpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(fpars[key])) mode+=1 npars.append(fpars['dec']) npars.append(fpars['inc']) npars.append(fpars['alpha95']) # Beta npars.append(fpars['dec']) isign=old_div(abs(fpars['inc']),fpars['inc']) npars.append(fpars['inc']-isign*90.) #Beta inc npars.append(fpars['alpha95']) # gamma npars.append(fpars['dec']+90.) # Beta dec npars.append(0.) #Beta inc if len(rDIs)>2: fpars=pmag.fisher_mean(rDIs) if verbose: print("mode ",mode) for key in list(fpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(fpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(fpars[key])) mode+=1 rpars.append(fpars['dec']) rpars.append(fpars['inc']) rpars.append(fpars['alpha95']) # Beta rpars.append(fpars['dec']) isign=old_div(abs(fpars['inc']),fpars['inc']) rpars.append(fpars['inc']-isign*90.) #Beta inc rpars.append(fpars['alpha95']) # gamma rpars.append(fpars['dec']+90.) # Beta dec rpars.append(0.) #Beta inc if dist=='K': etitle="Kent confidence ellipse" if len(nDIs)>3: kpars=pmag.dokent(nDIs,len(nDIs)) if verbose: print("mode ",mode) for key in list(kpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(kpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(kpars[key])) mode+=1 npars.append(kpars['dec']) npars.append(kpars['inc']) npars.append(kpars['Zeta']) npars.append(kpars['Zdec']) npars.append(kpars['Zinc']) npars.append(kpars['Eta']) npars.append(kpars['Edec']) npars.append(kpars['Einc']) if len(rDIs)>3: kpars=pmag.dokent(rDIs,len(rDIs)) if verbose: print("mode ",mode) for key in list(kpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(kpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(kpars[key])) mode+=1 rpars.append(kpars['dec']) rpars.append(kpars['inc']) rpars.append(kpars['Zeta']) rpars.append(kpars['Zdec']) rpars.append(kpars['Zinc']) rpars.append(kpars['Eta']) rpars.append(kpars['Edec']) rpars.append(kpars['Einc']) else: # assume bootstrap if dist=='BE': if len(nDIs)>5: BnDIs=pmag.di_boot(nDIs) Bkpars=pmag.dokent(BnDIs,1.) if verbose: print("mode ",mode) for key in list(Bkpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(Bkpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(Bkpars[key])) mode+=1 npars.append(Bkpars['dec']) npars.append(Bkpars['inc']) npars.append(Bkpars['Zeta']) npars.append(Bkpars['Zdec']) npars.append(Bkpars['Zinc']) npars.append(Bkpars['Eta']) npars.append(Bkpars['Edec']) npars.append(Bkpars['Einc']) if len(rDIs)>5: BrDIs=pmag.di_boot(rDIs) Bkpars=pmag.dokent(BrDIs,1.) if verbose: print("mode ",mode) for key in list(Bkpars.keys()): if key!='n' and verbose: print(" ",key, '%7.1f'%(Bkpars[key])) if key=='n' and verbose: print(" ",key, ' %i'%(Bkpars[key])) mode+=1 rpars.append(Bkpars['dec']) rpars.append(Bkpars['inc']) rpars.append(Bkpars['Zeta']) rpars.append(Bkpars['Zdec']) rpars.append(Bkpars['Zinc']) rpars.append(Bkpars['Eta']) rpars.append(Bkpars['Edec']) rpars.append(Bkpars['Einc']) etitle="Bootstrapped confidence ellipse" elif dist=='BV': sym={'lower':['o','c'],'upper':['o','g'],'size':3,'edgecolor':'face'} if len(nDIs)>5: BnDIs=pmag.di_boot(nDIs) pmagplotlib.plotEQsym(FIG['bdirs'],BnDIs,'Bootstrapped Eigenvectors', sym) if len(rDIs)>5: BrDIs=pmag.di_boot(rDIs) if len(nDIs)>5: # plot on existing plots pmagplotlib.plotDIsym(FIG['bdirs'],BrDIs,sym) else: pmagplotlib.plotEQ(FIG['bdirs'],BrDIs,'Bootstrapped Eigenvectors') if dist=='B': if len(nDIs)> 3 or len(rDIs)>3: pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],npars,0) elif len(nDIs)>3 and dist!='BV': pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],npars,0) if len(rDIs)>3: pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],rpars,0) elif len(rDIs)>3 and dist!='BV': pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],rpars,0) for key in list(FIG.keys()): files = {} filename = pmag.get_named_arg_from_sys('-fname') if filename: # use provided filename filename+= '.' + fmt elif pmagplotlib.isServer: # use server plot naming convention filename='LO:_'+locations+'_SI:_'+site+'_SA:_'+sample+'_SP:_'+specimen+'_CO:_'+crd+'_TY:_'+key+'_.'+fmt else: # use more readable naming convention filename = '' for item in [locations, site, sample, specimen, crd, key]: if item: item = item.replace(' ', '_') filename += item + '_' if filename.endswith('_'): filename = filename[:-1] filename += ".{}".format(fmt) files[key]=filename if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['eq']='Equal Area Plot' FIG = pmagplotlib.addBorders(FIG,titles,black,purple) pmagplotlib.saveP(FIG,files) if plt: pmagplotlib.saveP(FIG,files) continue if verbose: pmagplotlib.drawFIGS(FIG) ans=input(" S[a]ve to save plot, [q]uit, Return to continue: ") if ans == "q": sys.exit() if ans == "a": pmagplotlib.saveP(FIG,files) continue
def main(): """ NAME eqarea_magic.py DESCRIPTION makes equal area projections from declination/inclination data SYNTAX eqarea_magic.py [command line options] INPUT takes magic formatted sites, samples, specimens, or measurements OPTIONS -h prints help message and quits -f FILE: specify input magic format file from magic, default='sites.txt' supported types=[measurements, specimens, samples, sites] -fsp FILE: specify specimen file name, (required if you want to plot measurements by sample) default='specimens.txt' -fsa FILE: specify sample file name, (required if you want to plot specimens by site) default='samples.txt' -fsi FILE: specify site file name, default='sites.txt' -obj OBJ: specify level of plot [all, sit, sam, spc], default is all -crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted default is geographic, unspecified assumed geographic -fmt [svg,png,jpg] format for output plots -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors -c plot as colour contour -sav save plot and quit quietly NOTE all: entire file; sit: site; sam: sample; spc: specimen """ # initialize some default variables FIG = {} # plot dictionary FIG["eqarea"] = 1 # eqarea is figure 1 plotE = 0 plt = 0 # default to not plotting verbose = pmagplotlib.verbose # extract arguments from sys.argv if "-h" in sys.argv: print main.__doc__ sys.exit() dir_path = pmag.get_named_arg_from_sys("-WD", default_val=os.getcwd()) pmagplotlib.plot_init(FIG["eqarea"], 5, 5) in_file = pmag.get_named_arg_from_sys("-f", default_val="sites.txt") full_in_file = os.path.join(dir_path, in_file) plot_by = pmag.get_named_arg_from_sys("-obj", default_val="all").lower() spec_file = pmag.get_named_arg_from_sys("-fsp", default_val="specimens.txt") samp_file = pmag.get_named_arg_from_sys("-fsa", default_val="samples.txt") site_file = pmag.get_named_arg_from_sys("-fsi", default_val="sites.txt") if plot_by == "all": plot_key = "all" elif plot_by == "sit": plot_key = "site" elif plot_by == "sam": plot_key = "sample" elif plot_by == "spc": plot_key = "specimen" else: plot_key = "all" if "-c" in sys.argv: contour = 1 else: contour = 0 if "-sav" in sys.argv: plt = 1 verbose = 0 if "-ell" in sys.argv: plotE = 1 ind = sys.argv.index("-ell") ell_type = sys.argv[ind + 1] ell_type = pmag.get_named_arg_from_sys("-ell", "F") dist = ell_type.upper() # if dist type is unrecognized, use Fisher if dist not in ["F", "K", "B", "BE", "BV"]: dist = "F" if dist == "BV": FIG["bdirs"] = 2 pmagplotlib.plot_init(FIG["bdirs"], 5, 5) crd = pmag.get_named_arg_from_sys("-crd", default_val="g") if crd == "s": coord = "-1" elif crd == "t": coord = "100" else: coord = "0" fmt = pmag.get_named_arg_from_sys("-fmt", "svg") dec_key = "dir_dec" inc_key = "dir_inc" tilt_key = "dir_tilt_correction" # Dir_type_keys=['','site_direction_type','sample_direction_type','specimen_direction_type'] # fnames = {"specimens": spec_file, "samples": samp_file, "sites": site_file} contribution = nb.Contribution(dir_path, custom_filenames=fnames, single_file=in_file) # the object that contains the DataFrame + useful helper methods: table_name = contribution.tables.keys()[0] data_container = contribution.tables[table_name] # the actual DataFrame: data = data_container.df # uses sample infile to add temporary site_name # column to the specimen table data_container = contribution.tables[table_name] data = data_container.df if (plot_key != "all") and (plot_key not in data.columns): data = contribution.propagate_name_down(plot_key, table_name) # add tilt key into DataFrame columns if it isn't there already if tilt_key not in data.columns: data.loc[:, tilt_key] = None if verbose: print len(data), " records read from ", in_file # find desired dec,inc data: dir_type_key = "" # # get plotlist if not plotting all records # plotlist = [] if plot_key != "all": # return all where plot_key is not blank if plot_key not in data.columns: print 'Can\'t plot by "{}". That header is not in infile: {}'.format(plot_key, in_file) return plots = data[data[plot_key].notnull()] plotlist = plots[plot_key].unique() # grab unique values else: plotlist.append("All") for plot in plotlist: if verbose: print plot if plot == "All": # plot everything at once plot_data = data else: # pull out only partial data plot_data = data[data[plot_key] == plot] DIblock = [] GCblock = [] # SLblock, SPblock = [], [] title = plot mode = 1 k = 0 if dec_key not in plot_data.columns: print "-W- No dec/inc data" continue # get all records where dec & inc values exist plot_data = plot_data[plot_data[dec_key].notnull() & plot_data[inc_key].notnull()] if plot_data.empty: continue # this sorting out is done in get_di_bock # if coord == '0': # geographic, use records with no tilt key (or tilt_key 0) # cond1 = plot_data[tilt_key].fillna('') == coord # cond2 = plot_data[tilt_key].isnull() # plot_data = plot_data[cond1 | cond2] # else: # not geographic coordinates, use only records with correct tilt_key # plot_data = plot_data[plot_data[tilt_key] == coord] # get metadata for naming the plot file locations = data_container.get_name("location", df_slice=plot_data) site = data_container.get_name("site", df_slice=plot_data) sample = data_container.get_name("sample", df_slice=plot_data) specimen = data_container.get_name("specimen", df_slice=plot_data) # make sure method_codes is in plot_data if "method_codes" not in plot_data.columns: plot_data["method_codes"] = "" # get data blocks DIblock = data_container.get_di_block(df_slice=plot_data, tilt_corr=coord, excl=["DE-BFP"]) # SLblock = [[ind, row['method_codes']] for ind, row in plot_data.iterrows()] # get great circles great_circle_data = data_container.get_records_for_code("DE-BFP", incl=True, use_slice=True, sli=plot_data) if len(great_circle_data) > 0: gc_cond = great_circle_data[tilt_key] == coord GCblock = [[float(row[dec_key]), float(row[inc_key])] for ind, row in great_circle_data[gc_cond].iterrows()] # SPblock = [[ind, row['method_codes']] for ind, row in great_circle_data[gc_cond].iterrows()] if len(DIblock) > 0: if contour == 0: pmagplotlib.plotEQ(FIG["eqarea"], DIblock, title) else: pmagplotlib.plotEQcont(FIG["eqarea"], DIblock) else: pmagplotlib.plotNET(FIG["eqarea"]) if len(GCblock) > 0: for rec in GCblock: pmagplotlib.plotC(FIG["eqarea"], rec, 90.0, "g") if len(DIblock) == 0 and len(GCblock) == 0: if verbose: print "no records for plotting" continue # sys.exit() if plotE == 1: ppars = pmag.doprinc(DIblock) # get principal directions nDIs, rDIs, npars, rpars = [], [], [], [] for rec in DIblock: angle = pmag.angle([rec[0], rec[1]], [ppars["dec"], ppars["inc"]]) if angle > 90.0: rDIs.append(rec) else: nDIs.append(rec) if dist == "B": # do on whole dataset etitle = "Bingham confidence ellipse" bpars = pmag.dobingham(DIblock) for key in bpars.keys(): if key != "n" and verbose: print " ", key, "%7.1f" % (bpars[key]) if key == "n" and verbose: print " ", key, " %i" % (bpars[key]) npars.append(bpars["dec"]) npars.append(bpars["inc"]) npars.append(bpars["Zeta"]) npars.append(bpars["Zdec"]) npars.append(bpars["Zinc"]) npars.append(bpars["Eta"]) npars.append(bpars["Edec"]) npars.append(bpars["Einc"]) if dist == "F": etitle = "Fisher confidence cone" if len(nDIs) > 2: fpars = pmag.fisher_mean(nDIs) for key in fpars.keys(): if key != "n" and verbose: print " ", key, "%7.1f" % (fpars[key]) if key == "n" and verbose: print " ", key, " %i" % (fpars[key]) mode += 1 npars.append(fpars["dec"]) npars.append(fpars["inc"]) npars.append(fpars["alpha95"]) # Beta npars.append(fpars["dec"]) isign = abs(fpars["inc"]) / fpars["inc"] npars.append(fpars["inc"] - isign * 90.0) # Beta inc npars.append(fpars["alpha95"]) # gamma npars.append(fpars["dec"] + 90.0) # Beta dec npars.append(0.0) # Beta inc if len(rDIs) > 2: fpars = pmag.fisher_mean(rDIs) if verbose: print "mode ", mode for key in fpars.keys(): if key != "n" and verbose: print " ", key, "%7.1f" % (fpars[key]) if key == "n" and verbose: print " ", key, " %i" % (fpars[key]) mode += 1 rpars.append(fpars["dec"]) rpars.append(fpars["inc"]) rpars.append(fpars["alpha95"]) # Beta rpars.append(fpars["dec"]) isign = abs(fpars["inc"]) / fpars["inc"] rpars.append(fpars["inc"] - isign * 90.0) # Beta inc rpars.append(fpars["alpha95"]) # gamma rpars.append(fpars["dec"] + 90.0) # Beta dec rpars.append(0.0) # Beta inc if dist == "K": etitle = "Kent confidence ellipse" if len(nDIs) > 3: kpars = pmag.dokent(nDIs, len(nDIs)) if verbose: print "mode ", mode for key in kpars.keys(): if key != "n" and verbose: print " ", key, "%7.1f" % (kpars[key]) if key == "n" and verbose: print " ", key, " %i" % (kpars[key]) mode += 1 npars.append(kpars["dec"]) npars.append(kpars["inc"]) npars.append(kpars["Zeta"]) npars.append(kpars["Zdec"]) npars.append(kpars["Zinc"]) npars.append(kpars["Eta"]) npars.append(kpars["Edec"]) npars.append(kpars["Einc"]) if len(rDIs) > 3: kpars = pmag.dokent(rDIs, len(rDIs)) if verbose: print "mode ", mode for key in kpars.keys(): if key != "n" and verbose: print " ", key, "%7.1f" % (kpars[key]) if key == "n" and verbose: print " ", key, " %i" % (kpars[key]) mode += 1 rpars.append(kpars["dec"]) rpars.append(kpars["inc"]) rpars.append(kpars["Zeta"]) rpars.append(kpars["Zdec"]) rpars.append(kpars["Zinc"]) rpars.append(kpars["Eta"]) rpars.append(kpars["Edec"]) rpars.append(kpars["Einc"]) else: # assume bootstrap if dist == "BE": if len(nDIs) > 5: BnDIs = pmag.di_boot(nDIs) Bkpars = pmag.dokent(BnDIs, 1.0) if verbose: print "mode ", mode for key in Bkpars.keys(): if key != "n" and verbose: print " ", key, "%7.1f" % (Bkpars[key]) if key == "n" and verbose: print " ", key, " %i" % (Bkpars[key]) mode += 1 npars.append(Bkpars["dec"]) npars.append(Bkpars["inc"]) npars.append(Bkpars["Zeta"]) npars.append(Bkpars["Zdec"]) npars.append(Bkpars["Zinc"]) npars.append(Bkpars["Eta"]) npars.append(Bkpars["Edec"]) npars.append(Bkpars["Einc"]) if len(rDIs) > 5: BrDIs = pmag.di_boot(rDIs) Bkpars = pmag.dokent(BrDIs, 1.0) if verbose: print "mode ", mode for key in Bkpars.keys(): if key != "n" and verbose: print " ", key, "%7.1f" % (Bkpars[key]) if key == "n" and verbose: print " ", key, " %i" % (Bkpars[key]) mode += 1 rpars.append(Bkpars["dec"]) rpars.append(Bkpars["inc"]) rpars.append(Bkpars["Zeta"]) rpars.append(Bkpars["Zdec"]) rpars.append(Bkpars["Zinc"]) rpars.append(Bkpars["Eta"]) rpars.append(Bkpars["Edec"]) rpars.append(Bkpars["Einc"]) etitle = "Bootstrapped confidence ellipse" elif dist == "BV": sym = {"lower": ["o", "c"], "upper": ["o", "g"], "size": 3, "edgecolor": "face"} if len(nDIs) > 5: BnDIs = pmag.di_boot(nDIs) pmagplotlib.plotEQsym(FIG["bdirs"], BnDIs, "Bootstrapped Eigenvectors", sym) if len(rDIs) > 5: BrDIs = pmag.di_boot(rDIs) if len(nDIs) > 5: # plot on existing plots pmagplotlib.plotDIsym(FIG["bdirs"], BrDIs, sym) else: pmagplotlib.plotEQ(FIG["bdirs"], BrDIs, "Bootstrapped Eigenvectors") if dist == "B": if len(nDIs) > 3 or len(rDIs) > 3: pmagplotlib.plotCONF(FIG["eqarea"], etitle, [], npars, 0) elif len(nDIs) > 3 and dist != "BV": pmagplotlib.plotCONF(FIG["eqarea"], etitle, [], npars, 0) if len(rDIs) > 3: pmagplotlib.plotCONF(FIG["eqarea"], etitle, [], rpars, 0) elif len(rDIs) > 3 and dist != "BV": pmagplotlib.plotCONF(FIG["eqarea"], etitle, [], rpars, 0) for key in FIG.keys(): files = {} filename = pmag.get_named_arg_from_sys("-fname") if filename: filename += "." + fmt else: filename = ( "LO:_" + locations + "_SI:_" + site + "_SA:_" + sample + "_SP:_" + specimen + "_CO:_" + crd + "_TY:_" + key + "_." + fmt ) files[key] = filename if pmagplotlib.isServer: black = "#000000" purple = "#800080" titles = {} titles["eq"] = "Equal Area Plot" FIG = pmagplotlib.addBorders(FIG, titles, black, purple) pmagplotlib.saveP(FIG, files) if plt: pmagplotlib.saveP(FIG, files) continue if verbose: pmagplotlib.drawFIGS(FIG) ans = raw_input(" S[a]ve to save plot, [q]uit, Return to continue: ") if ans == "q": sys.exit() if ans == "a": pmagplotlib.saveP(FIG, files) continue