def main(): """ NAME eqarea_ell.py DESCRIPTION makes equal area projections from declination/inclination data and plot ellipses SYNTAX eqarea_ell.py -h [command line options] INPUT takes space delimited Dec/Inc data OPTIONS -h prints help message and quits -f FILE -fmt [svg,png,jpg] format for output plots -sav saves figures and quits -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors """ FIG={} # plot dictionary FIG['eq']=1 # eqarea is figure 1 fmt,dist,mode,plot='svg','F',1,0 sym={'lower':['o','r'],'upper':['o','w'],'size':10} plotE=0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if not set_env.IS_WIN: pmagplotlib.plot_init(FIG['eq'],5,5) if '-sav' in sys.argv:plot=1 if '-f' in sys.argv: ind=sys.argv.index("-f") title=sys.argv[ind+1] data=numpy.loadtxt(title).transpose() if '-ell' in sys.argv: plotE=1 ind=sys.argv.index('-ell') ell_type=sys.argv[ind+1] if ell_type=='F':dist='F' if ell_type=='K':dist='K' if ell_type=='B':dist='B' if ell_type=='Be':dist='BE' if ell_type=='Bv': dist='BV' FIG['bdirs']=2 pmagplotlib.plot_init(FIG['bdirs'],5,5) if '-fmt' in sys.argv: ind=sys.argv.index("-fmt") fmt=sys.argv[ind+1] DIblock=numpy.array([data[0],data[1]]).transpose() if len(DIblock)>0: pmagplotlib.plot_eq_sym(FIG['eq'],DIblock,title,sym) #if plot==0:pmagplotlib.draw_figs(FIG) else: print("no data to plot") sys.exit() if plotE==1: ppars=pmag.doprinc(DIblock) # get principal directions nDIs,rDIs,npars,rpars=[],[],[],[] for rec in DIblock: angle=pmag.angle([rec[0],rec[1]],[ppars['dec'],ppars['inc']]) if angle>90.: rDIs.append(rec) else: nDIs.append(rec) if dist=='B': # do on whole dataset etitle="Bingham confidence ellipse" bpars=pmag.dobingham(DIblock) for key in list(bpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(bpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(bpars[key])) npars.append(bpars['dec']) npars.append(bpars['inc']) npars.append(bpars['Zeta']) npars.append(bpars['Zdec']) npars.append(bpars['Zinc']) npars.append(bpars['Eta']) npars.append(bpars['Edec']) npars.append(bpars['Einc']) if dist=='F': etitle="Fisher confidence cone" if len(nDIs)>3: fpars=pmag.fisher_mean(nDIs) for key in list(fpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(fpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(fpars[key])) mode+=1 npars.append(fpars['dec']) npars.append(fpars['inc']) npars.append(fpars['alpha95']) # Beta npars.append(fpars['dec']) isign=abs(fpars['inc']) / fpars['inc'] npars.append(fpars['inc']-isign*90.) #Beta inc npars.append(fpars['alpha95']) # gamma npars.append(fpars['dec']+90.) # Beta dec npars.append(0.) #Beta inc if len(rDIs)>3: fpars=pmag.fisher_mean(rDIs) if pmagplotlib.verbose:print("mode ",mode) for key in list(fpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(fpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(fpars[key])) mode+=1 rpars.append(fpars['dec']) rpars.append(fpars['inc']) rpars.append(fpars['alpha95']) # Beta rpars.append(fpars['dec']) isign=abs(fpars['inc']) / fpars['inc'] rpars.append(fpars['inc']-isign*90.) #Beta inc rpars.append(fpars['alpha95']) # gamma rpars.append(fpars['dec']+90.) # Beta dec rpars.append(0.) #Beta inc if dist=='K': etitle="Kent confidence ellipse" if len(nDIs)>3: kpars=pmag.dokent(nDIs,len(nDIs)) if pmagplotlib.verbose:print("mode ",mode) for key in list(kpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(kpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(kpars[key])) mode+=1 npars.append(kpars['dec']) npars.append(kpars['inc']) npars.append(kpars['Zeta']) npars.append(kpars['Zdec']) npars.append(kpars['Zinc']) npars.append(kpars['Eta']) npars.append(kpars['Edec']) npars.append(kpars['Einc']) if len(rDIs)>3: kpars=pmag.dokent(rDIs,len(rDIs)) if pmagplotlib.verbose:print("mode ",mode) for key in list(kpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(kpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(kpars[key])) mode+=1 rpars.append(kpars['dec']) rpars.append(kpars['inc']) rpars.append(kpars['Zeta']) rpars.append(kpars['Zdec']) rpars.append(kpars['Zinc']) rpars.append(kpars['Eta']) rpars.append(kpars['Edec']) rpars.append(kpars['Einc']) else: # assume bootstrap if len(nDIs)<10 and len(rDIs)<10: print('too few data points for bootstrap') sys.exit() if dist=='BE': print('Be patient for bootstrap...') if len(nDIs)>=10: BnDIs=pmag.di_boot(nDIs) Bkpars=pmag.dokent(BnDIs,1.) if pmagplotlib.verbose:print("mode ",mode) for key in list(Bkpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(Bkpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(Bkpars[key])) mode+=1 npars.append(Bkpars['dec']) npars.append(Bkpars['inc']) npars.append(Bkpars['Zeta']) npars.append(Bkpars['Zdec']) npars.append(Bkpars['Zinc']) npars.append(Bkpars['Eta']) npars.append(Bkpars['Edec']) npars.append(Bkpars['Einc']) if len(rDIs)>=10: BrDIs=pmag.di_boot(rDIs) Bkpars=pmag.dokent(BrDIs,1.) if pmagplotlib.verbose:print("mode ",mode) for key in list(Bkpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(Bkpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(Bkpars[key])) mode+=1 rpars.append(Bkpars['dec']) rpars.append(Bkpars['inc']) rpars.append(Bkpars['Zeta']) rpars.append(Bkpars['Zdec']) rpars.append(Bkpars['Zinc']) rpars.append(Bkpars['Eta']) rpars.append(Bkpars['Edec']) rpars.append(Bkpars['Einc']) etitle="Bootstrapped confidence ellipse" elif dist=='BV': print('Be patient for bootstrap...') vsym={'lower':['+','k'],'upper':['x','k'],'size':5} if len(nDIs)>5: BnDIs=pmag.di_boot(nDIs) pmagplotlib.plot_eq_sym(FIG['bdirs'],BnDIs,'Bootstrapped Eigenvectors',vsym) if len(rDIs)>5: BrDIs=pmag.di_boot(rDIs) if len(nDIs)>5: # plot on existing plots pmagplotlib.plot_di_sym(FIG['bdirs'],BrDIs,vsym) else: pmagplotlib.plot_eq(FIG['bdirs'],BrDIs,'Bootstrapped Eigenvectors',vsym) if dist=='B': if len(nDIs)> 3 or len(rDIs)>3: pmagplotlib.plot_conf(FIG['eq'],etitle,[],npars,0) elif len(nDIs)>3 and dist!='BV': pmagplotlib.plot_conf(FIG['eq'],etitle,[],npars,0) if len(rDIs)>3: pmagplotlib.plot_conf(FIG['eq'],etitle,[],rpars,0) elif len(rDIs)>3 and dist!='BV': pmagplotlib.plot_conf(FIG['eq'],etitle,[],rpars,0) #if plot==0:pmagplotlib.draw_figs(FIG) if plot==0:pmagplotlib.draw_figs(FIG) # files={} for key in list(FIG.keys()): files[key]=title+'_'+key+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['eq']='Equal Area Plot' FIG = pmagplotlib.add_borders(FIG,titles,black,purple) pmagplotlib.save_plots(FIG,files) elif plot==0: ans=input(" S[a]ve to save plot, [q]uit, Return to continue: ") if ans=="q": sys.exit() if ans=="a": pmagplotlib.save_plots(FIG,files) else: pmagplotlib.save_plots(FIG,files)
def main(): """ NAME foldtest.py DESCRIPTION does a fold test (Tauxe, 2010) on data INPUT FORMAT dec inc dip_direction dip SYNTAX foldtest.py [command line options] OPTIONS -h prints help message and quits -f FILE file with input data -F FILE for confidence bounds on fold test -u ANGLE (circular standard deviation) for uncertainty on bedding poles -b MIN MAX bounds for quick search of percent untilting [default is -10 to 150%] -n NB number of bootstrap samples [default is 1000] -fmt FMT, specify format - default is svg -sav save figures and quit INPUT FILE Dec Inc Dip_Direction Dip in space delimited file OUTPUT PLOTS Geographic: is an equal area projection of the input data in original coordinates Stratigraphic: is an equal area projection of the input data in tilt adjusted coordinates % Untilting: The dashed (red) curves are representative plots of maximum eigenvalue (tau_1) as a function of untilting The solid line is the cumulative distribution of the % Untilting required to maximize tau for all the bootstrapped data sets. The dashed vertical lines are 95% confidence bounds on the % untilting that yields the most clustered result (maximum tau_1). Command line: prints out the bootstrapped iterations and finally the confidence bounds on optimum untilting. If the 95% conf bounds include 0, then a post-tilt magnetization is indicated If the 95% conf bounds include 100, then a pre-tilt magnetization is indicated If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is possible as is vertical axis rotation or other pathologies Geographic: is an equal area projection of the input data in OPTIONAL OUTPUT FILE: The output file has the % untilting within the 95% confidence bounds nd the number of bootstrap samples """ kappa=0 fmt,plot='svg',0 nb=1000 # number of bootstraps min,max=-10,150 if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-F' in sys.argv: ind=sys.argv.index('-F') outfile=open(sys.argv[ind+1],'w') else: outfile="" if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] DIDDs=numpy.loadtxt(file) else: print(main.__doc__) sys.exit() if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-sav' in sys.argv:plot=1 if '-b' in sys.argv: ind=sys.argv.index('-b') min=int(sys.argv[ind+1]) max=int(sys.argv[ind+2]) if '-n' in sys.argv: ind=sys.argv.index('-n') nb=int(sys.argv[ind+1]) if '-u' in sys.argv: ind=sys.argv.index('-u') csd=float(sys.argv[ind+1]) kappa=(81. / csd)**2 # # get to work # PLTS={'geo':1,'strat':2,'taus':3} # make plot dictionary pmagplotlib.plot_init(PLTS['geo'],5,5) pmagplotlib.plot_init(PLTS['strat'],5,5) pmagplotlib.plot_init(PLTS['taus'],5,5) pmagplotlib.plot_eq(PLTS['geo'],DIDDs,'Geographic') D,I=pmag.dotilt_V(DIDDs) TCs=numpy.array([D,I]).transpose() pmagplotlib.plot_eq(PLTS['strat'],TCs,'Stratigraphic') if not set_env.IS_WIN: if plot==0:pmagplotlib.draw_figs(PLTS) Percs=list(range(min,max)) Cdf,Untilt=[],[] pylab.figure(num=PLTS['taus']) print('doing ',nb,' iterations...please be patient.....') for n in range(nb): # do bootstrap data sets - plot first 25 as dashed red line if n%50==0:print(n) Taus=[] # set up lists for taus PDs=pmag.pseudo(DIDDs) if kappa!=0: for k in range(len(PDs)): d,i=pmag.fshdev(kappa) dipdir,dip=pmag.dodirot(d,i,PDs[k][2],PDs[k][3]) PDs[k][2]=dipdir PDs[k][3]=dip for perc in Percs: tilt=numpy.array([1.,1.,1.,0.01*perc]) D,I=pmag.dotilt_V(PDs*tilt) TCs=numpy.array([D,I]).transpose() ppars=pmag.doprinc(TCs) # get principal directions Taus.append(ppars['tau1']) if n<25:pylab.plot(Percs,Taus,'r--') Untilt.append(Percs[Taus.index(numpy.max(Taus))]) # tilt that gives maximum tau Cdf.append(float(n) / float(nb)) pylab.plot(Percs,Taus,'k') pylab.xlabel('% Untilting') pylab.ylabel('tau_1 (red), CDF (green)') Untilt.sort() # now for CDF of tilt of maximum tau pylab.plot(Untilt,Cdf,'g') lower=int(.025*nb) upper=int(.975*nb) pylab.axvline(x=Untilt[lower],ymin=0,ymax=1,linewidth=1,linestyle='--') pylab.axvline(x=Untilt[upper],ymin=0,ymax=1,linewidth=1,linestyle='--') tit= '%i - %i %s'%(Untilt[lower],Untilt[upper],'Percent Unfolding') print(tit) print('range of all bootstrap samples: ', Untilt[0], ' - ', Untilt[-1]) pylab.title(tit) outstring= '%i - %i; %i\n'%(Untilt[lower],Untilt[upper],nb) if outfile!="":outfile.write(outstring) files={} for key in list(PLTS.keys()): files[key]=('foldtest_'+'%s'%(key.strip()[:2])+'.'+fmt) if plot==0: pmagplotlib.draw_figs(PLTS) ans= input('S[a]ve all figures, <Return> to quit ') if ans!='a': print("Good bye") sys.exit() pmagplotlib.save_plots(PLTS,files)
def main(): """ NAME foldtest_magic.py DESCRIPTION does a fold test (Tauxe, 2010) on data INPUT FORMAT pmag_specimens format file, er_samples.txt format file (for bedding) SYNTAX foldtest_magic.py [command line options] OPTIONS -h prints help message and quits -f sites formatted file [default for 3.0 is sites.txt, for 2.5, pmag_sites.txt] -fsa samples formatted file -fsi sites formatted file -exc use criteria to set acceptance criteria (supported only for data model 3) -n NB, set number of bootstraps, default is 1000 -b MIN, MAX, set bounds for untilting, default is -10, 150 -fmt FMT, specify format - default is svg -sav saves plots and quits -DM NUM MagIC data model number (2 or 3, default 3) OUTPUT Geographic: is an equal area projection of the input data in original coordinates Stratigraphic: is an equal area projection of the input data in tilt adjusted coordinates % Untilting: The dashed (red) curves are representative plots of maximum eigenvalue (tau_1) as a function of untilting The solid line is the cumulative distribution of the % Untilting required to maximize tau for all the bootstrapped data sets. The dashed vertical lines are 95% confidence bounds on the % untilting that yields the most clustered result (maximum tau_1). Command line: prints out the bootstrapped iterations and finally the confidence bounds on optimum untilting. If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated If the 95% conf bounds include 100, then a post-tilt magnetization is indicated If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is possible as is vertical axis rotation or other pathologies """ if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit kappa = 0 dir_path = pmag.get_named_arg("-WD", ".") nboot = int(float(pmag.get_named_arg("-n", 1000))) # number of bootstraps fmt = pmag.get_named_arg("-fmt", "svg") data_model_num = int(float(pmag.get_named_arg("-DM", 3))) if data_model_num == 3: infile = pmag.get_named_arg("-f", 'sites.txt') orfile = 'samples.txt' site_col = 'site' dec_col = 'dir_dec' inc_col = 'dir_inc' tilt_col = 'dir_tilt_correction' dipkey, azkey = 'bed_dip', 'bed_dip_direction' crit_col = 'criterion' critfile = 'criteria.txt' else: infile = pmag.get_named_arg("-f", 'pmag_sites.txt') orfile = 'er_samples.txt' site_col = 'er_site_name' dec_col = 'site_dec' inc_col = 'site_inc' tilt_col = 'site_tilt_correction' dipkey, azkey = 'sample_bed_dip', 'sample_bed_dip_direction' crit_col = 'pmag_criteria_code' critfile = 'pmag_criteria.txt' if '-sav' in sys.argv: plot = 1 else: plot = 0 if '-b' in sys.argv: ind = sys.argv.index('-b') untilt_min = int(sys.argv[ind+1]) untilt_max = int(sys.argv[ind+2]) else: untilt_min, untilt_max = -10, 150 if '-fsa' in sys.argv: orfile = pmag.get_named_arg("-fsa", "") elif '-fsi' in sys.argv: orfile = pmag.get_named_arg("-fsi", "") if data_model_num == 3: dipkey, azkey = 'bed_dip', 'bed_dip_direction' else: dipkey, azkey = 'site_bed_dip', 'site_bed_dip_direction' else: if data_model_num == 3: orfile = 'sites.txt' else: orfile = 'pmag_sites.txt' orfile = pmag.resolve_file_name(orfile, dir_path) infile = pmag.resolve_file_name(infile, dir_path) critfile = pmag.resolve_file_name(critfile, dir_path) df = pd.read_csv(infile, sep='\t', header=1) # keep only records with tilt_col data = df.copy() data = data[data[tilt_col].notnull()] data = data.where(data.notnull(), "") # turn into pmag data list data = list(data.T.apply(dict)) # get orientation data if data_model_num == 3: # often orientation will be in infile (sites table) if os.path.split(orfile)[1] == os.path.split(infile)[1]: ordata = df[df[azkey].notnull()] ordata = ordata[ordata[dipkey].notnull()] ordata = list(ordata.T.apply(dict)) # sometimes orientation might be in a sample file instead else: ordata = pd.read_csv(orfile, sep='\t', header=1) ordata = list(ordata.T.apply(dict)) else: ordata, file_type = pmag.magic_read(orfile) if '-exc' in sys.argv: crits, file_type = pmag.magic_read(critfile) SiteCrits = [] for crit in crits: if crit[crit_col] == "DE-SITE": SiteCrits.append(crit) #break # get to work # PLTS = {'geo': 1, 'strat': 2, 'taus': 3} # make plot dictionary if not set_env.IS_WIN: pmagplotlib.plot_init(PLTS['geo'], 5, 5) pmagplotlib.plot_init(PLTS['strat'], 5, 5) pmagplotlib.plot_init(PLTS['taus'], 5, 5) if data_model_num == 2: GEOrecs = pmag.get_dictitem(data, tilt_col, '0', 'T') else: GEOrecs = data if len(GEOrecs) > 0: # have some geographic data num_dropped = 0 DIDDs = [] # set up list for dec inc dip_direction, dip for rec in GEOrecs: # parse data dip, dip_dir = 0, -1 Dec = float(rec[dec_col]) Inc = float(rec[inc_col]) orecs = pmag.get_dictitem( ordata, site_col, rec[site_col], 'T') if len(orecs) > 0: if orecs[0][azkey] != "": dip_dir = float(orecs[0][azkey]) if orecs[0][dipkey] != "": dip = float(orecs[0][dipkey]) if dip != 0 and dip_dir != -1: if '-exc' in sys.argv: keep = 1 for site_crit in SiteCrits: crit_name = site_crit['table_column'].split('.')[1] if crit_name and crit_name in rec.keys() and rec[crit_name]: # get the correct operation (<, >=, =, etc.) op = OPS[site_crit['criterion_operation']] # then make sure the site record passes if op(float(rec[crit_name]), float(site_crit['criterion_value'])): keep = 0 if keep == 1: DIDDs.append([Dec, Inc, dip_dir, dip]) else: num_dropped += 1 else: DIDDs.append([Dec, Inc, dip_dir, dip]) if num_dropped: print("-W- Dropped {} records because each failed one or more criteria".format(num_dropped)) else: print('no geographic directional data found') sys.exit() pmagplotlib.plot_eq(PLTS['geo'], DIDDs, 'Geographic') data = np.array(DIDDs) D, I = pmag.dotilt_V(data) TCs = np.array([D, I]).transpose() pmagplotlib.plot_eq(PLTS['strat'], TCs, 'Stratigraphic') if plot == 0: pmagplotlib.draw_figs(PLTS) Percs = list(range(untilt_min, untilt_max)) Cdf, Untilt = [], [] plt.figure(num=PLTS['taus']) print('doing ', nboot, ' iterations...please be patient.....') for n in range(nboot): # do bootstrap data sets - plot first 25 as dashed red line if n % 50 == 0: print(n) Taus = [] # set up lists for taus PDs = pmag.pseudo(DIDDs) if kappa != 0: for k in range(len(PDs)): d, i = pmag.fshdev(kappa) dipdir, dip = pmag.dodirot(d, i, PDs[k][2], PDs[k][3]) PDs[k][2] = dipdir PDs[k][3] = dip for perc in Percs: tilt = np.array([1., 1., 1., 0.01*perc]) D, I = pmag.dotilt_V(PDs*tilt) TCs = np.array([D, I]).transpose() ppars = pmag.doprinc(TCs) # get principal directions Taus.append(ppars['tau1']) if n < 25: plt.plot(Percs, Taus, 'r--') # tilt that gives maximum tau Untilt.append(Percs[Taus.index(np.max(Taus))]) Cdf.append(float(n) / float(nboot)) plt.plot(Percs, Taus, 'k') plt.xlabel('% Untilting') plt.ylabel('tau_1 (red), CDF (green)') Untilt.sort() # now for CDF of tilt of maximum tau plt.plot(Untilt, Cdf, 'g') lower = int(.025*nboot) upper = int(.975*nboot) plt.axvline(x=Untilt[lower], ymin=0, ymax=1, linewidth=1, linestyle='--') plt.axvline(x=Untilt[upper], ymin=0, ymax=1, linewidth=1, linestyle='--') tit = '%i - %i %s' % (Untilt[lower], Untilt[upper], 'Percent Unfolding') print(tit) plt.title(tit) if plot == 0: pmagplotlib.draw_figs(PLTS) ans = input('S[a]ve all figures, <Return> to quit \n ') if ans != 'a': print("Good bye") sys.exit() files = {} for key in list(PLTS.keys()): files[key] = ('foldtest_'+'%s' % (key.strip()[:2])+'.'+fmt) pmagplotlib.save_plots(PLTS, files)
def main(): """ NAME find_EI.py DESCRIPTION Applies series of assumed flattening factor and "unsquishes" inclinations assuming tangent function. Finds flattening factor that gives elongation/inclination pair consistent with TK03. Finds bootstrap confidence bounds SYNTAX find_EI.py [command line options] OPTIONS -h prints help message and quits -f FILE specify input file name -n N specify number of bootstraps - the more the better, but slower!, default is 1000 -sc uses a "site-level" correction to a Fisherian distribution instead of a "study-level" correction to a TK03-consistent distribution. Note that many directions (~ 100) are needed for this correction to be reliable. -fmt [svg,png,eps,pdf..] change plot format, default is svg -sav saves the figures and quits INPUT dec/inc pairs, delimited with space or tabs OUTPUT four plots: 1) equal area plot of original directions 2) Elongation/inclination pairs as a function of f, data plus 25 bootstrap samples 3) Cumulative distribution of bootstrapped optimal inclinations plus uncertainties. Estimate from original data set plotted as solid line 4) Orientation of principle direction through unflattening NOTE: If distribution does not have a solution, plot labeled: Pathological. Some bootstrap samples may have valid solutions and those are plotted in the CDFs and E/I plot. """ fmt,nb='svg',1000 plot=0 if '-h' in sys.argv: print(main.__doc__) sys.exit() # graceful quit elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] else: print(main.__doc__) sys.exit() if '-n' in sys.argv: ind=sys.argv.index('-n') nb=int(sys.argv[ind+1]) if '-sc' in sys.argv: site_correction = True else: site_correction = False if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-sav' in sys.argv:plot=1 data=numpy.loadtxt(file) upper,lower=int(round(.975*nb)),int(round(.025*nb)) E,I=[],[] PLTS={'eq':1,'ei':2,'cdf':3,'v2':4} pmagplotlib.plot_init(PLTS['eq'],6,6) pmagplotlib.plot_init(PLTS['ei'],5,5) pmagplotlib.plot_init(PLTS['cdf'],5,5) pmagplotlib.plot_init(PLTS['v2'],5,5) pmagplotlib.plot_eq(PLTS['eq'],data,'Data') # this is a problem #if plot==0:pmagplotlib.draw_figs(PLTS) ppars=pmag.doprinc(data) Io=ppars['inc'] n=ppars["N"] Es,Is,Fs,V2s=pmag.find_f(data) if site_correction: Inc,Elong=Is[Es.index(min(Es))],Es[Es.index(min(Es))] flat_f = Fs[Es.index(min(Es))] else: Inc,Elong=Is[-1],Es[-1] flat_f = Fs[-1] pmagplotlib.plot_ei(PLTS['ei'],Es,Is,flat_f) pmagplotlib.plot_v2s(PLTS['v2'],V2s,Is,flat_f) b=0 print("Bootstrapping.... be patient") while b<nb: bdata=pmag.pseudo(data) Esb,Isb,Fsb,V2sb=pmag.find_f(bdata) if b<25: pmagplotlib.plot_ei(PLTS['ei'],Esb,Isb,Fsb[-1]) if Esb[-1]!=0: ppars=pmag.doprinc(bdata) if site_correction: I.append(abs(Isb[Esb.index(min(Esb))])) E.append(Esb[Esb.index(min(Esb))]) else: I.append(abs(Isb[-1])) E.append(Esb[-1]) b+=1 if b%25==0:print(b,' out of ',nb) I.sort() E.sort() Eexp=[] for i in I: Eexp.append(pmag.EI(i)) if Inc==0: title= 'Pathological Distribution: '+'[%7.1f, %7.1f]' %(I[lower],I[upper]) else: title= '%7.1f [%7.1f, %7.1f]' %( Inc, I[lower],I[upper]) pmagplotlib.plot_ei(PLTS['ei'],Eexp,I,1) pmagplotlib.plot_cdf(PLTS['cdf'],I,'Inclinations','r',title) pmagplotlib.plot_vs(PLTS['cdf'],[I[lower],I[upper]],'b','--') pmagplotlib.plot_vs(PLTS['cdf'],[Inc],'g','-') pmagplotlib.plot_vs(PLTS['cdf'],[Io],'k','-') if plot==0: print('%7.1f %s %7.1f _ %7.1f ^ %7.1f: %6.4f _ %6.4f ^ %6.4f' %(Io, " => ", Inc, I[lower],I[upper], Elong, E[lower],E[upper])) print("Io Inc I_lower, I_upper, Elon, E_lower, E_upper") pmagplotlib.draw_figs(PLTS) ans = "" while ans not in ['q', 'a']: ans= input("S[a]ve plots - <q> to quit: ") if ans=='q': print("\n Good bye\n") sys.exit() files={} files['eq']='findEI_eq.'+fmt files['ei']='findEI_ei.'+fmt files['cdf']='findEI_cdf.'+fmt files['v2']='findEI_v2.'+fmt pmagplotlib.save_plots(PLTS,files)
def main(): """ NAME find_EI.py DESCRIPTION Applies series of assumed flattening factor and "unsquishes" inclinations assuming tangent function. Finds flattening factor that gives elongation/inclination pair consistent with TK03. Finds bootstrap confidence bounds SYNTAX find_EI.py [command line options] OPTIONS -h prints help message and quits -f FILE specify input file name -n N specify number of bootstraps - the more the better, but slower!, default is 1000 -sc uses a "site-level" correction to a Fisherian distribution instead of a "study-level" correction to a TK03-consistent distribution. Note that many directions (~ 100) are needed for this correction to be reliable. -fmt [svg,png,eps,pdf..] change plot format, default is svg -sav saves the figures and quits INPUT dec/inc pairs, delimited with space or tabs OUTPUT four plots: 1) equal area plot of original directions 2) Elongation/inclination pairs as a function of f, data plus 25 bootstrap samples 3) Cumulative distribution of bootstrapped optimal inclinations plus uncertainties. Estimate from original data set plotted as solid line 4) Orientation of principle direction through unflattening NOTE: If distribution does not have a solution, plot labeled: Pathological. Some bootstrap samples may have valid solutions and those are plotted in the CDFs and E/I plot. """ fmt, nb = 'svg', 1000 plot = 0 if '-h' in sys.argv: print(main.__doc__) sys.exit() # graceful quit elif '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] else: print(main.__doc__) sys.exit() if '-n' in sys.argv: ind = sys.argv.index('-n') nb = int(sys.argv[ind + 1]) if '-sc' in sys.argv: site_correction = True else: site_correction = False if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] if '-sav' in sys.argv: plot = 1 data = numpy.loadtxt(file) upper, lower = int(round(.975 * nb)), int(round(.025 * nb)) E, I = [], [] PLTS = {'eq': 1, 'ei': 2, 'cdf': 3, 'v2': 4} pmagplotlib.plot_init(PLTS['eq'], 6, 6) pmagplotlib.plot_init(PLTS['ei'], 5, 5) pmagplotlib.plot_init(PLTS['cdf'], 5, 5) pmagplotlib.plot_init(PLTS['v2'], 5, 5) pmagplotlib.plot_eq(PLTS['eq'], data, 'Data') # this is a problem #if plot==0:pmagplotlib.draw_figs(PLTS) ppars = pmag.doprinc(data) Io = ppars['inc'] n = ppars["N"] Es, Is, Fs, V2s = pmag.find_f(data) if site_correction: Inc, Elong = Is[Es.index(min(Es))], Es[Es.index(min(Es))] flat_f = Fs[Es.index(min(Es))] else: Inc, Elong = Is[-1], Es[-1] flat_f = Fs[-1] pmagplotlib.plot_ei(PLTS['ei'], Es, Is, flat_f) pmagplotlib.plot_v2s(PLTS['v2'], V2s, Is, flat_f) b = 0 print("Bootstrapping.... be patient") while b < nb: bdata = pmag.pseudo(data) Esb, Isb, Fsb, V2sb = pmag.find_f(bdata) if b < 25: pmagplotlib.plot_ei(PLTS['ei'], Esb, Isb, Fsb[-1]) if Esb[-1] != 0: ppars = pmag.doprinc(bdata) if site_correction: I.append(abs(Isb[Esb.index(min(Esb))])) E.append(Esb[Esb.index(min(Esb))]) else: I.append(abs(Isb[-1])) E.append(Esb[-1]) b += 1 if b % 25 == 0: print(b, ' out of ', nb) I.sort() E.sort() Eexp = [] for i in I: Eexp.append(pmag.EI(i)) if Inc == 0: title = 'Pathological Distribution: ' + '[%7.1f, %7.1f]' % (I[lower], I[upper]) else: title = '%7.1f [%7.1f, %7.1f]' % (Inc, I[lower], I[upper]) pmagplotlib.plot_ei(PLTS['ei'], Eexp, I, 1) pmagplotlib.plot_cdf(PLTS['cdf'], I, 'Inclinations', 'r', title) pmagplotlib.plot_vs(PLTS['cdf'], [I[lower], I[upper]], 'b', '--') pmagplotlib.plot_vs(PLTS['cdf'], [Inc], 'g', '-') pmagplotlib.plot_vs(PLTS['cdf'], [Io], 'k', '-') if plot == 0: print('%7.1f %s %7.1f _ %7.1f ^ %7.1f: %6.4f _ %6.4f ^ %6.4f' % (Io, " => ", Inc, I[lower], I[upper], Elong, E[lower], E[upper])) print("Io Inc I_lower, I_upper, Elon, E_lower, E_upper") pmagplotlib.draw_figs(PLTS) ans = "" while ans not in ['q', 'a']: ans = input("S[a]ve plots - <q> to quit: ") if ans == 'q': print("\n Good bye\n") sys.exit() files = {} files['eq'] = 'findEI_eq.' + fmt files['ei'] = 'findEI_ei.' + fmt files['cdf'] = 'findEI_cdf.' + fmt files['v2'] = 'findEI_v2.' + fmt pmagplotlib.save_plots(PLTS, files)
def main(): """ NAME foldtest_magic.py DESCRIPTION does a fold test (Tauxe, 2010) on data INPUT FORMAT pmag_specimens format file, er_samples.txt format file (for bedding) SYNTAX foldtest_magic.py [command line options] OPTIONS -h prints help message and quits -f sites formatted file [default for 3.0 is sites.txt, for 2.5, pmag_sites.txt] -fsa samples formatted file -fsi sites formatted file -exc use criteria to set acceptance criteria (supported only for data model 3) -n NB, set number of bootstraps, default is 1000 -b MIN, MAX, set bounds for untilting, default is -10, 150 -fmt FMT, specify format - default is svg -sav saves plots and quits -DM NUM MagIC data model number (2 or 3, default 3) OUTPUT Geographic: is an equal area projection of the input data in original coordinates Stratigraphic: is an equal area projection of the input data in tilt adjusted coordinates % Untilting: The dashed (red) curves are representative plots of maximum eigenvalue (tau_1) as a function of untilting The solid line is the cumulative distribution of the % Untilting required to maximize tau for all the bootstrapped data sets. The dashed vertical lines are 95% confidence bounds on the % untilting that yields the most clustered result (maximum tau_1). Command line: prints out the bootstrapped iterations and finally the confidence bounds on optimum untilting. If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated If the 95% conf bounds include 100, then a post-tilt magnetization is indicated If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is possible as is vertical axis rotation or other pathologies """ if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit kappa = 0 dir_path = pmag.get_named_arg("-WD", ".") nboot = int(float(pmag.get_named_arg("-n", 1000))) # number of bootstraps fmt = pmag.get_named_arg("-fmt", "svg") data_model_num = int(float(pmag.get_named_arg("-DM", 3))) if data_model_num == 3: infile = pmag.get_named_arg("-f", 'sites.txt') orfile = 'samples.txt' site_col = 'site' dec_col = 'dir_dec' inc_col = 'dir_inc' tilt_col = 'dir_tilt_correction' dipkey, azkey = 'bed_dip', 'bed_dip_direction' crit_col = 'criterion' critfile = 'criteria.txt' else: infile = pmag.get_named_arg("-f", 'pmag_sites.txt') orfile = 'er_samples.txt' site_col = 'er_site_name' dec_col = 'site_dec' inc_col = 'site_inc' tilt_col = 'site_tilt_correction' dipkey, azkey = 'sample_bed_dip', 'sample_bed_dip_direction' crit_col = 'pmag_criteria_code' critfile = 'pmag_criteria.txt' if '-sav' in sys.argv: plot = 1 else: plot = 0 if '-b' in sys.argv: ind = sys.argv.index('-b') untilt_min = int(sys.argv[ind + 1]) untilt_max = int(sys.argv[ind + 2]) else: untilt_min, untilt_max = -10, 150 if '-fsa' in sys.argv: orfile = pmag.get_named_arg("-fsa", "") elif '-fsi' in sys.argv: orfile = pmag.get_named_arg("-fsi", "") if data_model_num == 3: dipkey, azkey = 'bed_dip', 'bed_dip_direction' else: dipkey, azkey = 'site_bed_dip', 'site_bed_dip_direction' else: if data_model_num == 3: orfile = 'sites.txt' else: orfile = 'pmag_sites.txt' orfile = pmag.resolve_file_name(orfile, dir_path) infile = pmag.resolve_file_name(infile, dir_path) critfile = pmag.resolve_file_name(critfile, dir_path) df = pd.read_csv(infile, sep='\t', header=1) # keep only records with tilt_col data = df.copy() data = data[data[tilt_col].notnull()] data = data.where(data.notnull(), "") # turn into pmag data list data = list(data.T.apply(dict)) # get orientation data if data_model_num == 3: # often orientation will be in infile (sites table) if os.path.split(orfile)[1] == os.path.split(infile)[1]: ordata = df[df[azkey].notnull()] ordata = ordata[ordata[dipkey].notnull()] ordata = list(ordata.T.apply(dict)) # sometimes orientation might be in a sample file instead else: ordata = pd.read_csv(orfile, sep='\t', header=1) ordata = list(ordata.T.apply(dict)) else: ordata, file_type = pmag.magic_read(orfile) if '-exc' in sys.argv: crits, file_type = pmag.magic_read(critfile) SiteCrits = [] for crit in crits: if crit[crit_col] == "DE-SITE": SiteCrits.append(crit) #break # get to work # PLTS = {'geo': 1, 'strat': 2, 'taus': 3} # make plot dictionary if not set_env.IS_WIN: pmagplotlib.plot_init(PLTS['geo'], 5, 5) pmagplotlib.plot_init(PLTS['strat'], 5, 5) pmagplotlib.plot_init(PLTS['taus'], 5, 5) if data_model_num == 2: GEOrecs = pmag.get_dictitem(data, tilt_col, '0', 'T') else: GEOrecs = data if len(GEOrecs) > 0: # have some geographic data num_dropped = 0 DIDDs = [] # set up list for dec inc dip_direction, dip for rec in GEOrecs: # parse data dip, dip_dir = 0, -1 Dec = float(rec[dec_col]) Inc = float(rec[inc_col]) orecs = pmag.get_dictitem(ordata, site_col, rec[site_col], 'T') if len(orecs) > 0: if orecs[0][azkey] != "": dip_dir = float(orecs[0][azkey]) if orecs[0][dipkey] != "": dip = float(orecs[0][dipkey]) if dip != 0 and dip_dir != -1: if '-exc' in sys.argv: keep = 1 for site_crit in SiteCrits: crit_name = site_crit['table_column'].split('.')[1] if crit_name and crit_name in rec.keys( ) and rec[crit_name]: # get the correct operation (<, >=, =, etc.) op = OPS[site_crit['criterion_operation']] # then make sure the site record passes if op(float(rec[crit_name]), float(site_crit['criterion_value'])): keep = 0 if keep == 1: DIDDs.append([Dec, Inc, dip_dir, dip]) else: num_dropped += 1 else: DIDDs.append([Dec, Inc, dip_dir, dip]) if num_dropped: print( "-W- Dropped {} records because each failed one or more criteria" .format(num_dropped)) else: print('no geographic directional data found') sys.exit() pmagplotlib.plot_eq(PLTS['geo'], DIDDs, 'Geographic') data = np.array(DIDDs) D, I = pmag.dotilt_V(data) TCs = np.array([D, I]).transpose() pmagplotlib.plot_eq(PLTS['strat'], TCs, 'Stratigraphic') if plot == 0: pmagplotlib.draw_figs(PLTS) Percs = list(range(untilt_min, untilt_max)) Cdf, Untilt = [], [] plt.figure(num=PLTS['taus']) print('doing ', nboot, ' iterations...please be patient.....') for n in range( nboot ): # do bootstrap data sets - plot first 25 as dashed red line if n % 50 == 0: print(n) Taus = [] # set up lists for taus PDs = pmag.pseudo(DIDDs) if kappa != 0: for k in range(len(PDs)): d, i = pmag.fshdev(kappa) dipdir, dip = pmag.dodirot(d, i, PDs[k][2], PDs[k][3]) PDs[k][2] = dipdir PDs[k][3] = dip for perc in Percs: tilt = np.array([1., 1., 1., 0.01 * perc]) D, I = pmag.dotilt_V(PDs * tilt) TCs = np.array([D, I]).transpose() ppars = pmag.doprinc(TCs) # get principal directions Taus.append(ppars['tau1']) if n < 25: plt.plot(Percs, Taus, 'r--') # tilt that gives maximum tau Untilt.append(Percs[Taus.index(np.max(Taus))]) Cdf.append(float(n) / float(nboot)) plt.plot(Percs, Taus, 'k') plt.xlabel('% Untilting') plt.ylabel('tau_1 (red), CDF (green)') Untilt.sort() # now for CDF of tilt of maximum tau plt.plot(Untilt, Cdf, 'g') lower = int(.025 * nboot) upper = int(.975 * nboot) plt.axvline(x=Untilt[lower], ymin=0, ymax=1, linewidth=1, linestyle='--') plt.axvline(x=Untilt[upper], ymin=0, ymax=1, linewidth=1, linestyle='--') tit = '%i - %i %s' % (Untilt[lower], Untilt[upper], 'Percent Unfolding') print(tit) plt.title(tit) if plot == 0: pmagplotlib.draw_figs(PLTS) ans = input('S[a]ve all figures, <Return> to quit \n ') if ans != 'a': print("Good bye") sys.exit() files = {} for key in list(PLTS.keys()): files[key] = ('foldtest_' + '%s' % (key.strip()[:2]) + '.' + fmt) pmagplotlib.save_plots(PLTS, files)
def main(): """ NAME plotdi_a.py DESCRIPTION plots equal area projection from dec inc data and fisher mean, cone of confidence INPUT FORMAT takes dec, inc, alpha95 as first three columns in space delimited file SYNTAX plotdi_a.py [-i][-f FILE] OPTIONS -f FILE to read file name from command line -fmt [png,jpg,eps,pdf,svg] set plot file format ['svg' is default] -sav save plot and quit """ fmt,plot='svg',0 if len(sys.argv) > 0: if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-sav' in sys.argv:plot=1 if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() else: data=sys.stdin.readlines() # read in data from standard input DIs,Pars=[],[] for line in data: # read in the data from standard input pars=[] rec=line.split() # split each line on space to get records DIs.append([float(rec[0]),float(rec[1])]) pars.append(float(rec[0])) pars.append(float(rec[1])) pars.append(float(rec[2])) pars.append(float(rec[0])) isign=abs(float(rec[1])) / float(rec[1]) pars.append(float(rec[1])-isign*90.) #Beta inc pars.append(float(rec[2])) # gamma pars.append(float(rec[0])+90.) # Beta dec pars.append(0.) #Beta inc Pars.append(pars) # EQ={'eq':1} # make plot dictionary pmagplotlib.plot_init(EQ['eq'],5,5) title='Equal area projection' pmagplotlib.plot_eq(EQ['eq'],DIs,title)# plot directions for k in range(len(Pars)): pmagplotlib.plot_ell(EQ['eq'],Pars[k],'b',0,1) # plot ellipses files={} for key in list(EQ.keys()): files[key]=key+'.'+fmt titles={} titles['eq']='Equal Area Plot' if pmagplotlib.isServer: black = '#000000' purple = '#800080' EQ = pmagplotlib.add_borders(EQ,titles,black,purple) pmagplotlib.save_plots(EQ,files) elif plot==0: pmagplotlib.draw_figs(EQ) ans=input(" S[a]ve to save plot, [q]uit, Return to continue: ") if ans=="q": sys.exit() if ans=="a": pmagplotlib.save_plots(EQ,files) else: pmagplotlib.save_plots(EQ,files)
def main(): """ NAME foldtest.py DESCRIPTION does a fold test (Tauxe, 2010) on data INPUT FORMAT dec inc dip_direction dip SYNTAX foldtest.py [command line options] OPTIONS -h prints help message and quits -f FILE file with input data -F FILE for confidence bounds on fold test -u ANGLE (circular standard deviation) for uncertainty on bedding poles -b MIN MAX bounds for quick search of percent untilting [default is -10 to 150%] -n NB number of bootstrap samples [default is 1000] -fmt FMT, specify format - default is svg -sav save figures and quit INPUT FILE Dec Inc Dip_Direction Dip in space delimited file OUTPUT PLOTS Geographic: is an equal area projection of the input data in original coordinates Stratigraphic: is an equal area projection of the input data in tilt adjusted coordinates % Untilting: The dashed (red) curves are representative plots of maximum eigenvalue (tau_1) as a function of untilting The solid line is the cumulative distribution of the % Untilting required to maximize tau for all the bootstrapped data sets. The dashed vertical lines are 95% confidence bounds on the % untilting that yields the most clustered result (maximum tau_1). Command line: prints out the bootstrapped iterations and finally the confidence bounds on optimum untilting. If the 95% conf bounds include 0, then a post-tilt magnetization is indicated If the 95% conf bounds include 100, then a pre-tilt magnetization is indicated If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is possible as is vertical axis rotation or other pathologies Geographic: is an equal area projection of the input data in OPTIONAL OUTPUT FILE: The output file has the % untilting within the 95% confidence bounds nd the number of bootstrap samples """ kappa = 0 fmt, plot = 'svg', 0 nb = 1000 # number of bootstraps min, max = -10, 150 if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-F' in sys.argv: ind = sys.argv.index('-F') outfile = open(sys.argv[ind + 1], 'w') else: outfile = "" if '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] DIDDs = numpy.loadtxt(file) else: print(main.__doc__) sys.exit() if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] if '-sav' in sys.argv: plot = 1 if '-b' in sys.argv: ind = sys.argv.index('-b') min = int(sys.argv[ind + 1]) max = int(sys.argv[ind + 2]) if '-n' in sys.argv: ind = sys.argv.index('-n') nb = int(sys.argv[ind + 1]) if '-u' in sys.argv: ind = sys.argv.index('-u') csd = float(sys.argv[ind + 1]) kappa = (81. / csd)**2 # # get to work # PLTS = {'geo': 1, 'strat': 2, 'taus': 3} # make plot dictionary pmagplotlib.plot_init(PLTS['geo'], 5, 5) pmagplotlib.plot_init(PLTS['strat'], 5, 5) pmagplotlib.plot_init(PLTS['taus'], 5, 5) pmagplotlib.plot_eq(PLTS['geo'], DIDDs, 'Geographic') D, I = pmag.dotilt_V(DIDDs) TCs = numpy.array([D, I]).transpose() pmagplotlib.plot_eq(PLTS['strat'], TCs, 'Stratigraphic') if not set_env.IS_WIN: if plot == 0: pmagplotlib.draw_figs(PLTS) Percs = list(range(min, max)) Cdf, Untilt = [], [] pylab.figure(num=PLTS['taus']) print('doing ', nb, ' iterations...please be patient.....') for n in range( nb): # do bootstrap data sets - plot first 25 as dashed red line if n % 50 == 0: print(n) Taus = [] # set up lists for taus PDs = pmag.pseudo(DIDDs) if kappa != 0: for k in range(len(PDs)): d, i = pmag.fshdev(kappa) dipdir, dip = pmag.dodirot(d, i, PDs[k][2], PDs[k][3]) PDs[k][2] = dipdir PDs[k][3] = dip for perc in Percs: tilt = numpy.array([1., 1., 1., 0.01 * perc]) D, I = pmag.dotilt_V(PDs * tilt) TCs = numpy.array([D, I]).transpose() ppars = pmag.doprinc(TCs) # get principal directions Taus.append(ppars['tau1']) if n < 25: pylab.plot(Percs, Taus, 'r--') Untilt.append(Percs[Taus.index( numpy.max(Taus))]) # tilt that gives maximum tau Cdf.append(float(n) / float(nb)) pylab.plot(Percs, Taus, 'k') pylab.xlabel('% Untilting') pylab.ylabel('tau_1 (red), CDF (green)') Untilt.sort() # now for CDF of tilt of maximum tau pylab.plot(Untilt, Cdf, 'g') lower = int(.025 * nb) upper = int(.975 * nb) pylab.axvline(x=Untilt[lower], ymin=0, ymax=1, linewidth=1, linestyle='--') pylab.axvline(x=Untilt[upper], ymin=0, ymax=1, linewidth=1, linestyle='--') tit = '%i - %i %s' % (Untilt[lower], Untilt[upper], 'Percent Unfolding') print(tit) print('range of all bootstrap samples: ', Untilt[0], ' - ', Untilt[-1]) pylab.title(tit) outstring = '%i - %i; %i\n' % (Untilt[lower], Untilt[upper], nb) if outfile != "": outfile.write(outstring) files = {} for key in list(PLTS.keys()): files[key] = ('foldtest_' + '%s' % (key.strip()[:2]) + '.' + fmt) if plot == 0: pmagplotlib.draw_figs(PLTS) ans = input('S[a]ve all figures, <Return> to quit ') if ans != 'a': print("Good bye") sys.exit() pmagplotlib.save_plots(PLTS, files)
def main(): """ NAME plotdi_e.py DESCRIPTION plots equal area projection from dec inc data and cones of confidence (Fisher, kent or Bingham or bootstrap). INPUT FORMAT takes dec/inc as first two columns in space delimited file SYNTAX plotdi_e.py [command line options] OPTIONS -h prints help message and quits -i for interactive parameter entry -f FILE, sets input filename on command line -Fish plots unit vector mean direction, alpha95 -Bing plots Principal direction, Bingham confidence ellipse -Kent plots unit vector mean direction, confidence ellipse -Boot E plots unit vector mean direction, bootstrapped confidence ellipse -Boot V plots unit vector mean direction, distribution of bootstrapped means """ dist = 'F' # default distribution is Fisherian mode = 1 title = "" EQ = {'eq': 1} if len(sys.argv) > 0: if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-i' in sys.argv: # ask for filename file = input("Enter file name with dec, inc data: ") dist = input( "Enter desired distrubution: [Fish]er, [Bing]ham, [Kent] [Boot] [default is Fisher]: " ) if dist == "": dist = "F" if dist == "Bing": dist = "B" if dist == "Kent": dist = "K" if dist == "Boot": type = input(" Ellipses or distribution of vectors? [E]/V ") if type == "" or type == "E": dist = "BE" else: dist = "BE" else: # if '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] else: print('you must specify a file name') print(main.__doc__) sys.exit() if '-Bing' in sys.argv: dist = 'B' if '-Kent' in sys.argv: dist = 'K' if '-Boot' in sys.argv: ind = sys.argv.index('-Boot') type = sys.argv[ind + 1] if type == 'E': dist = 'BE' elif type == 'V': dist = 'BV' EQ['bdirs'] = 2 pmagplotlib.plot_init(EQ['bdirs'], 5, 5) else: print(main.__doc__) sys.exit() pmagplotlib.plot_init(EQ['eq'], 5, 5) # # get to work f = open(file, 'r') data = f.readlines() # DIs = [] # set up list for dec inc data DiRecs = [] pars = [] nDIs, rDIs, npars, rpars = [], [], [], [] mode = 1 for line in data: # read in the data from standard input DiRec = {} rec = line.split() # split each line on space to get records DIs.append((float(rec[0]), float(rec[1]), 1.)) DiRec['dec'] = rec[0] DiRec['inc'] = rec[1] DiRec['direction_type'] = 'l' DiRecs.append(DiRec) # split into two modes ppars = pmag.doprinc(DIs) # get principal directions for rec in DIs: angle = pmag.angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']]) if angle > 90.: rDIs.append(rec) else: nDIs.append(rec) if dist == 'B': # do on whole dataset title = "Bingham confidence ellipse" bpars = pmag.dobingham(DIs) for key in list(bpars.keys()): if key != 'n': print(" ", key, '%7.1f' % (bpars[key])) if key == 'n': print(" ", key, ' %i' % (bpars[key])) npars.append(bpars['dec']) npars.append(bpars['inc']) npars.append(bpars['Zeta']) npars.append(bpars['Zdec']) npars.append(bpars['Zinc']) npars.append(bpars['Eta']) npars.append(bpars['Edec']) npars.append(bpars['Einc']) if dist == 'F': title = "Fisher confidence cone" if len(nDIs) > 3: fpars = pmag.fisher_mean(nDIs) print("mode ", mode) for key in list(fpars.keys()): if key != 'n': print(" ", key, '%7.1f' % (fpars[key])) if key == 'n': print(" ", key, ' %i' % (fpars[key])) mode += 1 npars.append(fpars['dec']) npars.append(fpars['inc']) npars.append(fpars['alpha95']) # Beta npars.append(fpars['dec']) isign = abs(fpars['inc']) / fpars['inc'] npars.append(fpars['inc'] - isign * 90.) #Beta inc npars.append(fpars['alpha95']) # gamma npars.append(fpars['dec'] + 90.) # Beta dec npars.append(0.) #Beta inc if len(rDIs) > 3: fpars = pmag.fisher_mean(rDIs) print("mode ", mode) for key in list(fpars.keys()): if key != 'n': print(" ", key, '%7.1f' % (fpars[key])) if key == 'n': print(" ", key, ' %i' % (fpars[key])) mode += 1 rpars.append(fpars['dec']) rpars.append(fpars['inc']) rpars.append(fpars['alpha95']) # Beta rpars.append(fpars['dec']) isign = abs(fpars['inc']) / fpars['inc'] rpars.append(fpars['inc'] - isign * 90.) #Beta inc rpars.append(fpars['alpha95']) # gamma rpars.append(fpars['dec'] + 90.) # Beta dec rpars.append(0.) #Beta inc if dist == 'K': title = "Kent confidence ellipse" if len(nDIs) > 3: kpars = pmag.dokent(nDIs, len(nDIs)) print("mode ", mode) for key in list(kpars.keys()): if key != 'n': print(" ", key, '%7.1f' % (kpars[key])) if key == 'n': print(" ", key, ' %i' % (kpars[key])) mode += 1 npars.append(kpars['dec']) npars.append(kpars['inc']) npars.append(kpars['Zeta']) npars.append(kpars['Zdec']) npars.append(kpars['Zinc']) npars.append(kpars['Eta']) npars.append(kpars['Edec']) npars.append(kpars['Einc']) if len(rDIs) > 3: kpars = pmag.dokent(rDIs, len(rDIs)) print("mode ", mode) for key in list(kpars.keys()): if key != 'n': print(" ", key, '%7.1f' % (kpars[key])) if key == 'n': print(" ", key, ' %i' % (kpars[key])) mode += 1 rpars.append(kpars['dec']) rpars.append(kpars['inc']) rpars.append(kpars['Zeta']) rpars.append(kpars['Zdec']) rpars.append(kpars['Zinc']) rpars.append(kpars['Eta']) rpars.append(kpars['Edec']) rpars.append(kpars['Einc']) else: # assume bootstrap if dist == 'BE': if len(nDIs) > 5: BnDIs = pmag.di_boot(nDIs) Bkpars = pmag.dokent(BnDIs, 1.) print("mode ", mode) for key in list(Bkpars.keys()): if key != 'n': print(" ", key, '%7.1f' % (Bkpars[key])) if key == 'n': print(" ", key, ' %i' % (Bkpars[key])) mode += 1 npars.append(Bkpars['dec']) npars.append(Bkpars['inc']) npars.append(Bkpars['Zeta']) npars.append(Bkpars['Zdec']) npars.append(Bkpars['Zinc']) npars.append(Bkpars['Eta']) npars.append(Bkpars['Edec']) npars.append(Bkpars['Einc']) if len(rDIs) > 5: BrDIs = pmag.di_boot(rDIs) Bkpars = pmag.dokent(BrDIs, 1.) print("mode ", mode) for key in list(Bkpars.keys()): if key != 'n': print(" ", key, '%7.1f' % (Bkpars[key])) if key == 'n': print(" ", key, ' %i' % (Bkpars[key])) mode += 1 rpars.append(Bkpars['dec']) rpars.append(Bkpars['inc']) rpars.append(Bkpars['Zeta']) rpars.append(Bkpars['Zdec']) rpars.append(Bkpars['Zinc']) rpars.append(Bkpars['Eta']) rpars.append(Bkpars['Edec']) rpars.append(Bkpars['Einc']) title = "Bootstrapped confidence ellipse" elif dist == 'BV': if len(nDIs) > 5: pmagplotlib.plot_eq(EQ['eq'], nDIs, 'Data') BnDIs = pmag.di_boot(nDIs) pmagplotlib.plot_eq(EQ['bdirs'], BnDIs, 'Bootstrapped Eigenvectors') if len(rDIs) > 5: BrDIs = pmag.di_boot(rDIs) if len(nDIs) > 5: # plot on existing plots pmagplotlib.plot_di(EQ['eq'], rDIs) pmagplotlib.plot_di(EQ['bdirs'], BrDIs) else: pmagplotlib.plot_eq(EQ['eq'], rDIs, 'Data') pmagplotlib.plot_eq(EQ['bdirs'], BrDIs, 'Bootstrapped Eigenvectors') pmagplotlib.draw_figs(EQ) ans = input('s[a]ve, [q]uit ') if ans == 'q': sys.exit() if ans == 'a': files = {} for key in list(EQ.keys()): files[key] = 'BE_' + key + '.svg' pmagplotlib.save_plots(EQ, files) sys.exit() if len(nDIs) > 5: pmagplotlib.plot_conf(EQ['eq'], title, DiRecs, npars, 1) if len(rDIs) > 5 and dist != 'B': pmagplotlib.plot_conf(EQ['eq'], title, [], rpars, 0) elif len(rDIs) > 5 and dist != 'B': pmagplotlib.plot_conf(EQ['eq'], title, DiRecs, rpars, 1) pmagplotlib.draw_figs(EQ) ans = input('s[a]ve, [q]uit ') if ans == 'q': sys.exit() if ans == 'a': files = {} for key in list(EQ.keys()): files[key] = key + '.svg' pmagplotlib.save_plots(EQ, files)
def main(): """ NAME eqarea_magic.py DESCRIPTION makes equal area projections from declination/inclination data SYNTAX eqarea_magic.py [command line options] INPUT takes magic formatted pmag_results, pmag_sites, pmag_samples or pmag_specimens OPTIONS -h prints help message and quits -f FILE: specify input magic format file from magic,default='pmag_results.txt' supported types=[magic_measurements,pmag_specimens, pmag_samples, pmag_sites, pmag_results, magic_web] -obj OBJ: specify level of plot [all, sit, sam, spc], default is all -crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted default is geographic, unspecified assumed geographic -fmt [svg,png,jpg] format for output plots -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors -c plot as colour contour -sav save plot and quit quietly NOTE all: entire file; sit: site; sam: sample; spc: specimen """ FIG = {} # plot dictionary FIG['eqarea'] = 1 # eqarea is figure 1 in_file, plot_key, coord, crd = 'pmag_results.txt', 'all', "0", 'g' plotE, contour = 0, 0 dir_path = '.' fmt = 'svg' verbose = pmagplotlib.verbose if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind+1] pmagplotlib.plot_init(FIG['eqarea'], 5, 5) if '-f' in sys.argv: ind = sys.argv.index("-f") in_file = dir_path+"/"+sys.argv[ind+1] if '-obj' in sys.argv: ind = sys.argv.index('-obj') plot_by = sys.argv[ind+1] if plot_by == 'all': plot_key = 'all' if plot_by == 'sit': plot_key = 'er_site_name' if plot_by == 'sam': plot_key = 'er_sample_name' if plot_by == 'spc': plot_key = 'er_specimen_name' if '-c' in sys.argv: contour = 1 plt = 0 if '-sav' in sys.argv: plt = 1 verbose = 0 if '-ell' in sys.argv: plotE = 1 ind = sys.argv.index('-ell') ell_type = sys.argv[ind+1] if ell_type == 'F': dist = 'F' if ell_type == 'K': dist = 'K' if ell_type == 'B': dist = 'B' if ell_type == 'Be': dist = 'BE' if ell_type == 'Bv': dist = 'BV' FIG['bdirs'] = 2 pmagplotlib.plot_init(FIG['bdirs'], 5, 5) if '-crd' in sys.argv: ind = sys.argv.index("-crd") crd = sys.argv[ind+1] if crd == 's': coord = "-1" if crd == 'g': coord = "0" if crd == 't': coord = "100" if '-fmt' in sys.argv: ind = sys.argv.index("-fmt") fmt = sys.argv[ind+1] Dec_keys = ['site_dec', 'sample_dec', 'specimen_dec', 'measurement_dec', 'average_dec', 'none'] Inc_keys = ['site_inc', 'sample_inc', 'specimen_inc', 'measurement_inc', 'average_inc', 'none'] Tilt_keys = ['tilt_correction', 'site_tilt_correction', 'sample_tilt_correction', 'specimen_tilt_correction', 'none'] Dir_type_keys = ['', 'site_direction_type', 'sample_direction_type', 'specimen_direction_type'] Name_keys = ['er_specimen_name', 'er_sample_name', 'er_site_name', 'pmag_result_name'] data, file_type = pmag.magic_read(in_file) if file_type == 'pmag_results' and plot_key != "all": plot_key = plot_key+'s' # need plural for results table if verbose: print(len(data), ' records read from ', in_file) # # # find desired dec,inc data: # dir_type_key = '' # # get plotlist if not plotting all records # plotlist = [] if plot_key != "all": plots = pmag.get_dictitem(data, plot_key, '', 'F') for rec in plots: if rec[plot_key] not in plotlist: plotlist.append(rec[plot_key]) plotlist.sort() else: plotlist.append('All') for plot in plotlist: # if verbose: print plot DIblock = [] GCblock = [] SLblock, SPblock = [], [] title = plot mode = 1 dec_key, inc_key, tilt_key, name_key, k = "", "", "", "", 0 if plot != "All": odata = pmag.get_dictitem(data, plot_key, plot, 'T') else: odata = data # data for this obj for dec_key in Dec_keys: # get all records with this dec_key not blank Decs = pmag.get_dictitem(odata, dec_key, '', 'F') if len(Decs) > 0: break for inc_key in Inc_keys: # get all records with this inc_key not blank Incs = pmag.get_dictitem(Decs, inc_key, '', 'F') if len(Incs) > 0: break for tilt_key in Tilt_keys: if tilt_key in Incs[0].keys(): break # find the tilt_key for these records if tilt_key == 'none': # no tilt key in data, need to fix this with fake data which will be unknown tilt tilt_key = 'tilt_correction' for rec in Incs: rec[tilt_key] = '' # get all records matching specified coordinate system cdata = pmag.get_dictitem(Incs, tilt_key, coord, 'T') if coord == '0': # geographic # get all the blank records - assume geographic udata = pmag.get_dictitem(Incs, tilt_key, '', 'T') if len(cdata) == 0: crd = '' if len(udata) > 0: for d in udata: cdata.append(d) crd = crd+'u' for name_key in Name_keys: # get all records with this name_key not blank Names = pmag.get_dictitem(cdata, name_key, '', 'F') if len(Names) > 0: break for dir_type_key in Dir_type_keys: # get all records with this direction type Dirs = pmag.get_dictitem(cdata, dir_type_key, '', 'F') if len(Dirs) > 0: break if dir_type_key == "": dir_type_key = 'direction_type' locations, site, sample, specimen = "", "", "", "" for rec in cdata: # pick out the data if 'er_location_name' in rec.keys() and rec['er_location_name'] != "" and rec['er_location_name'] not in locations: locations = locations + \ rec['er_location_name'].replace("/", "")+"_" if 'er_location_names' in rec.keys() and rec['er_location_names'] != "": locs = rec['er_location_names'].split(':') for loc in locs: if loc not in locations: locations = locations+loc.replace("/", "")+'_' if plot_key == 'er_site_name' or plot_key == 'er_sample_name' or plot_key == 'er_specimen_name': site = rec['er_site_name'] if plot_key == 'er_sample_name' or plot_key == 'er_specimen_name': sample = rec['er_sample_name'] if plot_key == 'er_specimen_name': specimen = rec['er_specimen_name'] if plot_key == 'er_site_names' or plot_key == 'er_sample_names' or plot_key == 'er_specimen_names': site = rec['er_site_names'] if plot_key == 'er_sample_names' or plot_key == 'er_specimen_names': sample = rec['er_sample_names'] if plot_key == 'er_specimen_names': specimen = rec['er_specimen_names'] if dir_type_key not in rec.keys() or rec[dir_type_key] == "": rec[dir_type_key] = 'l' if 'magic_method_codes' not in rec.keys(): rec['magic_method_codes'] = "" DIblock.append([float(rec[dec_key]), float(rec[inc_key])]) SLblock.append([rec[name_key], rec['magic_method_codes']]) if rec[tilt_key] == coord and rec[dir_type_key] != 'l' and rec[dec_key] != "" and rec[inc_key] != "": GCblock.append([float(rec[dec_key]), float(rec[inc_key])]) SPblock.append([rec[name_key], rec['magic_method_codes']]) if len(DIblock) == 0 and len(GCblock) == 0: if verbose: print("no records for plotting") sys.exit() if verbose: for k in range(len(SLblock)): print('%s %s %7.1f %7.1f' % ( SLblock[k][0], SLblock[k][1], DIblock[k][0], DIblock[k][1])) for k in range(len(SPblock)): print('%s %s %7.1f %7.1f' % ( SPblock[k][0], SPblock[k][1], GCblock[k][0], GCblock[k][1])) if len(DIblock) > 0: if contour == 0: pmagplotlib.plot_eq(FIG['eqarea'], DIblock, title) else: pmagplotlib.plot_eq_cont(FIG['eqarea'], DIblock) else: pmagplotlib.plot_net(FIG['eqarea']) if len(GCblock) > 0: for rec in GCblock: pmagplotlib.plot_circ(FIG['eqarea'], rec, 90., 'g') if plotE == 1: ppars = pmag.doprinc(DIblock) # get principal directions nDIs, rDIs, npars, rpars = [], [], [], [] for rec in DIblock: angle = pmag.angle([rec[0], rec[1]], [ ppars['dec'], ppars['inc']]) if angle > 90.: rDIs.append(rec) else: nDIs.append(rec) if dist == 'B': # do on whole dataset etitle = "Bingham confidence ellipse" bpars = pmag.dobingham(DIblock) for key in bpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (bpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (bpars[key])) npars.append(bpars['dec']) npars.append(bpars['inc']) npars.append(bpars['Zeta']) npars.append(bpars['Zdec']) npars.append(bpars['Zinc']) npars.append(bpars['Eta']) npars.append(bpars['Edec']) npars.append(bpars['Einc']) if dist == 'F': etitle = "Fisher confidence cone" if len(nDIs) > 2: fpars = pmag.fisher_mean(nDIs) for key in fpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (fpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (fpars[key])) mode += 1 npars.append(fpars['dec']) npars.append(fpars['inc']) npars.append(fpars['alpha95']) # Beta npars.append(fpars['dec']) isign = abs(fpars['inc'])/fpars['inc'] npars.append(fpars['inc']-isign*90.) # Beta inc npars.append(fpars['alpha95']) # gamma npars.append(fpars['dec']+90.) # Beta dec npars.append(0.) # Beta inc if len(rDIs) > 2: fpars = pmag.fisher_mean(rDIs) if verbose: print("mode ", mode) for key in fpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (fpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (fpars[key])) mode += 1 rpars.append(fpars['dec']) rpars.append(fpars['inc']) rpars.append(fpars['alpha95']) # Beta rpars.append(fpars['dec']) isign = abs(fpars['inc'])/fpars['inc'] rpars.append(fpars['inc']-isign*90.) # Beta inc rpars.append(fpars['alpha95']) # gamma rpars.append(fpars['dec']+90.) # Beta dec rpars.append(0.) # Beta inc if dist == 'K': etitle = "Kent confidence ellipse" if len(nDIs) > 3: kpars = pmag.dokent(nDIs, len(nDIs)) if verbose: print("mode ", mode) for key in kpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (kpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (kpars[key])) mode += 1 npars.append(kpars['dec']) npars.append(kpars['inc']) npars.append(kpars['Zeta']) npars.append(kpars['Zdec']) npars.append(kpars['Zinc']) npars.append(kpars['Eta']) npars.append(kpars['Edec']) npars.append(kpars['Einc']) if len(rDIs) > 3: kpars = pmag.dokent(rDIs, len(rDIs)) if verbose: print("mode ", mode) for key in kpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (kpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (kpars[key])) mode += 1 rpars.append(kpars['dec']) rpars.append(kpars['inc']) rpars.append(kpars['Zeta']) rpars.append(kpars['Zdec']) rpars.append(kpars['Zinc']) rpars.append(kpars['Eta']) rpars.append(kpars['Edec']) rpars.append(kpars['Einc']) else: # assume bootstrap if dist == 'BE': if len(nDIs) > 5: BnDIs = pmag.di_boot(nDIs) Bkpars = pmag.dokent(BnDIs, 1.) if verbose: print("mode ", mode) for key in Bkpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (Bkpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (Bkpars[key])) mode += 1 npars.append(Bkpars['dec']) npars.append(Bkpars['inc']) npars.append(Bkpars['Zeta']) npars.append(Bkpars['Zdec']) npars.append(Bkpars['Zinc']) npars.append(Bkpars['Eta']) npars.append(Bkpars['Edec']) npars.append(Bkpars['Einc']) if len(rDIs) > 5: BrDIs = pmag.di_boot(rDIs) Bkpars = pmag.dokent(BrDIs, 1.) if verbose: print("mode ", mode) for key in Bkpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (Bkpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (Bkpars[key])) mode += 1 rpars.append(Bkpars['dec']) rpars.append(Bkpars['inc']) rpars.append(Bkpars['Zeta']) rpars.append(Bkpars['Zdec']) rpars.append(Bkpars['Zinc']) rpars.append(Bkpars['Eta']) rpars.append(Bkpars['Edec']) rpars.append(Bkpars['Einc']) etitle = "Bootstrapped confidence ellipse" elif dist == 'BV': sym = {'lower': ['o', 'c'], 'upper': [ 'o', 'g'], 'size': 3, 'edgecolor': 'face'} if len(nDIs) > 5: BnDIs = pmag.di_boot(nDIs) pmagplotlib.plot_eq_sym( FIG['bdirs'], BnDIs, 'Bootstrapped Eigenvectors', sym) if len(rDIs) > 5: BrDIs = pmag.di_boot(rDIs) if len(nDIs) > 5: # plot on existing plots pmagplotlib.plot_di_sym(FIG['bdirs'], BrDIs, sym) else: pmagplotlib.plot_eq( FIG['bdirs'], BrDIs, 'Bootstrapped Eigenvectors') if dist == 'B': if len(nDIs) > 3 or len(rDIs) > 3: pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], npars, 0) elif len(nDIs) > 3 and dist != 'BV': pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], npars, 0) if len(rDIs) > 3: pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], rpars, 0) elif len(rDIs) > 3 and dist != 'BV': pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], rpars, 0) if verbose: pmagplotlib.draw_figs(FIG) # files = {} locations = locations[:-1] for key in FIG.keys(): if pmagplotlib.isServer: # use server plot naming convention filename = 'LO:_'+locations+'_SI:_'+site+'_SA:_'+sample + \ '_SP:_'+specimen+'_CO:_'+crd+'_TY:_'+key+'_.'+fmt else: # use more readable plot naming convention filename = '' for item in [locations, site, sample, specimen, crd, key]: if item: item = item.replace(' ', '_') filename += item + '_' if filename.endswith('_'): filename = filename[:-1] filename += ".{}".format(fmt) files[key] = filename if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['eq'] = 'Equal Area Plot' FIG = pmagplotlib.add_borders(FIG, titles, black, purple) pmagplotlib.save_plots(FIG, files) elif verbose: ans = raw_input( " S[a]ve to save plot, [q]uit, Return to continue: ") if ans == "q": sys.exit() if ans == "a": pmagplotlib.save_plots(FIG, files) if plt: pmagplotlib.save_plots(FIG, files)
def main(): """ NAME plotdi_e.py DESCRIPTION plots equal area projection from dec inc data and cones of confidence (Fisher, kent or Bingham or bootstrap). INPUT FORMAT takes dec/inc as first two columns in space delimited file SYNTAX plotdi_e.py [command line options] OPTIONS -h prints help message and quits -i for interactive parameter entry -f FILE, sets input filename on command line -Fish plots unit vector mean direction, alpha95 -Bing plots Principal direction, Bingham confidence ellipse -Kent plots unit vector mean direction, confidence ellipse -Boot E plots unit vector mean direction, bootstrapped confidence ellipse -Boot V plots unit vector mean direction, distribution of bootstrapped means """ dist='F' # default distribution is Fisherian mode=1 title="" EQ={'eq':1} if len(sys.argv) > 0: if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-i' in sys.argv: # ask for filename file=input("Enter file name with dec, inc data: ") dist=input("Enter desired distrubution: [Fish]er, [Bing]ham, [Kent] [Boot] [default is Fisher]: ") if dist=="":dist="F" if dist=="Bing":dist="B" if dist=="Kent":dist="K" if dist=="Boot": type=input(" Ellipses or distribution of vectors? [E]/V ") if type=="" or type=="E": dist="BE" else: dist="BE" else: # if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] else: print('you must specify a file name') print(main.__doc__) sys.exit() if '-Bing' in sys.argv:dist='B' if '-Kent' in sys.argv:dist='K' if '-Boot' in sys.argv: ind=sys.argv.index('-Boot') type=sys.argv[ind+1] if type=='E': dist='BE' elif type=='V': dist='BV' EQ['bdirs']=2 pmagplotlib.plot_init(EQ['bdirs'],5,5) else: print(main.__doc__) sys.exit() pmagplotlib.plot_init(EQ['eq'],5,5) # # get to work f=open(file,'r') data=f.readlines() # DIs= [] # set up list for dec inc data DiRecs=[] pars=[] nDIs,rDIs,npars,rpars=[],[],[],[] mode =1 for line in data: # read in the data from standard input DiRec={} rec=line.split() # split each line on space to get records DIs.append((float(rec[0]),float(rec[1]),1.)) DiRec['dec']=rec[0] DiRec['inc']=rec[1] DiRec['direction_type']='l' DiRecs.append(DiRec) # split into two modes ppars=pmag.doprinc(DIs) # get principal directions for rec in DIs: angle=pmag.angle([rec[0],rec[1]],[ppars['dec'],ppars['inc']]) if angle>90.: rDIs.append(rec) else: nDIs.append(rec) if dist=='B': # do on whole dataset title="Bingham confidence ellipse" bpars=pmag.dobingham(DIs) for key in list(bpars.keys()): if key!='n':print(" ",key, '%7.1f'%(bpars[key])) if key=='n':print(" ",key, ' %i'%(bpars[key])) npars.append(bpars['dec']) npars.append(bpars['inc']) npars.append(bpars['Zeta']) npars.append(bpars['Zdec']) npars.append(bpars['Zinc']) npars.append(bpars['Eta']) npars.append(bpars['Edec']) npars.append(bpars['Einc']) if dist=='F': title="Fisher confidence cone" if len(nDIs)>3: fpars=pmag.fisher_mean(nDIs) print("mode ",mode) for key in list(fpars.keys()): if key!='n':print(" ",key, '%7.1f'%(fpars[key])) if key=='n':print(" ",key, ' %i'%(fpars[key])) mode+=1 npars.append(fpars['dec']) npars.append(fpars['inc']) npars.append(fpars['alpha95']) # Beta npars.append(fpars['dec']) isign=abs(fpars['inc']) / fpars['inc'] npars.append(fpars['inc']-isign*90.) #Beta inc npars.append(fpars['alpha95']) # gamma npars.append(fpars['dec']+90.) # Beta dec npars.append(0.) #Beta inc if len(rDIs)>3: fpars=pmag.fisher_mean(rDIs) print("mode ",mode) for key in list(fpars.keys()): if key!='n':print(" ",key, '%7.1f'%(fpars[key])) if key=='n':print(" ",key, ' %i'%(fpars[key])) mode+=1 rpars.append(fpars['dec']) rpars.append(fpars['inc']) rpars.append(fpars['alpha95']) # Beta rpars.append(fpars['dec']) isign=abs(fpars['inc']) / fpars['inc'] rpars.append(fpars['inc']-isign*90.) #Beta inc rpars.append(fpars['alpha95']) # gamma rpars.append(fpars['dec']+90.) # Beta dec rpars.append(0.) #Beta inc if dist=='K': title="Kent confidence ellipse" if len(nDIs)>3: kpars=pmag.dokent(nDIs,len(nDIs)) print("mode ",mode) for key in list(kpars.keys()): if key!='n':print(" ",key, '%7.1f'%(kpars[key])) if key=='n':print(" ",key, ' %i'%(kpars[key])) mode+=1 npars.append(kpars['dec']) npars.append(kpars['inc']) npars.append(kpars['Zeta']) npars.append(kpars['Zdec']) npars.append(kpars['Zinc']) npars.append(kpars['Eta']) npars.append(kpars['Edec']) npars.append(kpars['Einc']) if len(rDIs)>3: kpars=pmag.dokent(rDIs,len(rDIs)) print("mode ",mode) for key in list(kpars.keys()): if key!='n':print(" ",key, '%7.1f'%(kpars[key])) if key=='n':print(" ",key, ' %i'%(kpars[key])) mode+=1 rpars.append(kpars['dec']) rpars.append(kpars['inc']) rpars.append(kpars['Zeta']) rpars.append(kpars['Zdec']) rpars.append(kpars['Zinc']) rpars.append(kpars['Eta']) rpars.append(kpars['Edec']) rpars.append(kpars['Einc']) else: # assume bootstrap if dist=='BE': if len(nDIs)>5: BnDIs=pmag.di_boot(nDIs) Bkpars=pmag.dokent(BnDIs,1.) print("mode ",mode) for key in list(Bkpars.keys()): if key!='n':print(" ",key, '%7.1f'%(Bkpars[key])) if key=='n':print(" ",key, ' %i'%(Bkpars[key])) mode+=1 npars.append(Bkpars['dec']) npars.append(Bkpars['inc']) npars.append(Bkpars['Zeta']) npars.append(Bkpars['Zdec']) npars.append(Bkpars['Zinc']) npars.append(Bkpars['Eta']) npars.append(Bkpars['Edec']) npars.append(Bkpars['Einc']) if len(rDIs)>5: BrDIs=pmag.di_boot(rDIs) Bkpars=pmag.dokent(BrDIs,1.) print("mode ",mode) for key in list(Bkpars.keys()): if key!='n':print(" ",key, '%7.1f'%(Bkpars[key])) if key=='n':print(" ",key, ' %i'%(Bkpars[key])) mode+=1 rpars.append(Bkpars['dec']) rpars.append(Bkpars['inc']) rpars.append(Bkpars['Zeta']) rpars.append(Bkpars['Zdec']) rpars.append(Bkpars['Zinc']) rpars.append(Bkpars['Eta']) rpars.append(Bkpars['Edec']) rpars.append(Bkpars['Einc']) title="Bootstrapped confidence ellipse" elif dist=='BV': if len(nDIs)>5: pmagplotlib.plot_eq(EQ['eq'],nDIs,'Data') BnDIs=pmag.di_boot(nDIs) pmagplotlib.plot_eq(EQ['bdirs'],BnDIs,'Bootstrapped Eigenvectors') if len(rDIs)>5: BrDIs=pmag.di_boot(rDIs) if len(nDIs)>5: # plot on existing plots pmagplotlib.plot_di(EQ['eq'],rDIs) pmagplotlib.plot_di(EQ['bdirs'],BrDIs) else: pmagplotlib.plot_eq(EQ['eq'],rDIs,'Data') pmagplotlib.plot_eq(EQ['bdirs'],BrDIs,'Bootstrapped Eigenvectors') pmagplotlib.draw_figs(EQ) ans=input('s[a]ve, [q]uit ') if ans=='q':sys.exit() if ans=='a': files={} for key in list(EQ.keys()): files[key]='BE_'+key+'.svg' pmagplotlib.save_plots(EQ,files) sys.exit() if len(nDIs)>5: pmagplotlib.plot_conf(EQ['eq'],title,DiRecs,npars,1) if len(rDIs)>5 and dist!='B': pmagplotlib.plot_conf(EQ['eq'],title,[],rpars,0) elif len(rDIs)>5 and dist!='B': pmagplotlib.plot_conf(EQ['eq'],title,DiRecs,rpars,1) pmagplotlib.draw_figs(EQ) ans=input('s[a]ve, [q]uit ') if ans=='q':sys.exit() if ans=='a': files={} for key in list(EQ.keys()): files[key]=key+'.svg' pmagplotlib.save_plots(EQ,files)
def main(): """ NAME plotdi_a.py DESCRIPTION plots equal area projection from dec inc data and fisher mean, cone of confidence INPUT FORMAT takes dec, inc, alpha95 as first three columns in space delimited file SYNTAX plotdi_a.py [-i][-f FILE] OPTIONS -f FILE to read file name from command line -fmt [png,jpg,eps,pdf,svg] set plot file format ['svg' is default] -sav save plot and quit """ fmt, plot = 'svg', 0 if len(sys.argv) > 0: if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] if '-sav' in sys.argv: plot = 1 if '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] f = open(file, 'r') data = f.readlines() else: data = sys.stdin.readlines() # read in data from standard input DIs, Pars = [], [] for line in data: # read in the data from standard input pars = [] rec = line.split() # split each line on space to get records DIs.append([float(rec[0]), float(rec[1])]) pars.append(float(rec[0])) pars.append(float(rec[1])) pars.append(float(rec[2])) pars.append(float(rec[0])) isign = abs(float(rec[1])) / float(rec[1]) pars.append(float(rec[1]) - isign * 90.) #Beta inc pars.append(float(rec[2])) # gamma pars.append(float(rec[0]) + 90.) # Beta dec pars.append(0.) #Beta inc Pars.append(pars) # EQ = {'eq': 1} # make plot dictionary pmagplotlib.plot_init(EQ['eq'], 5, 5) title = 'Equal area projection' pmagplotlib.plot_eq(EQ['eq'], DIs, title) # plot directions for k in range(len(Pars)): pmagplotlib.plot_ell(EQ['eq'], Pars[k], 'b', 0, 1) # plot ellipses files = {} for key in list(EQ.keys()): files[key] = key + '.' + fmt titles = {} titles['eq'] = 'Equal Area Plot' if pmagplotlib.isServer: black = '#000000' purple = '#800080' EQ = pmagplotlib.add_borders(EQ, titles, black, purple) pmagplotlib.save_plots(EQ, files) elif plot == 0: pmagplotlib.draw_figs(EQ) ans = input(" S[a]ve to save plot, [q]uit, Return to continue: ") if ans == "q": sys.exit() if ans == "a": pmagplotlib.save_plots(EQ, files) else: pmagplotlib.save_plots(EQ, files)
def main(): """ NAME eqarea_magic.py DESCRIPTION makes equal area projections from declination/inclination data SYNTAX eqarea_magic.py [command line options] INPUT takes magic formatted pmag_results, pmag_sites, pmag_samples or pmag_specimens OPTIONS -h prints help message and quits -f FILE: specify input magic format file from magic,default='pmag_results.txt' supported types=[magic_measurements,pmag_specimens, pmag_samples, pmag_sites, pmag_results, magic_web] -obj OBJ: specify level of plot [all, sit, sam, spc], default is all -crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted default is geographic, unspecified assumed geographic -fmt [svg,png,jpg] format for output plots -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors -c plot as colour contour -sav save plot and quit quietly NOTE all: entire file; sit: site; sam: sample; spc: specimen """ FIG = {} # plot dictionary FIG['eqarea'] = 1 # eqarea is figure 1 in_file, plot_key, coord, crd = 'pmag_results.txt', 'all', "0", 'g' plotE, contour = 0, 0 dir_path = '.' fmt = 'svg' verbose = pmagplotlib.verbose if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] pmagplotlib.plot_init(FIG['eqarea'], 5, 5) if '-f' in sys.argv: ind = sys.argv.index("-f") in_file = dir_path + "/" + sys.argv[ind + 1] if '-obj' in sys.argv: ind = sys.argv.index('-obj') plot_by = sys.argv[ind + 1] if plot_by == 'all': plot_key = 'all' if plot_by == 'sit': plot_key = 'er_site_name' if plot_by == 'sam': plot_key = 'er_sample_name' if plot_by == 'spc': plot_key = 'er_specimen_name' if '-c' in sys.argv: contour = 1 plt = 0 if '-sav' in sys.argv: plt = 1 verbose = 0 if '-ell' in sys.argv: plotE = 1 ind = sys.argv.index('-ell') ell_type = sys.argv[ind + 1] if ell_type == 'F': dist = 'F' if ell_type == 'K': dist = 'K' if ell_type == 'B': dist = 'B' if ell_type == 'Be': dist = 'BE' if ell_type == 'Bv': dist = 'BV' FIG['bdirs'] = 2 pmagplotlib.plot_init(FIG['bdirs'], 5, 5) if '-crd' in sys.argv: ind = sys.argv.index("-crd") crd = sys.argv[ind + 1] if crd == 's': coord = "-1" if crd == 'g': coord = "0" if crd == 't': coord = "100" if '-fmt' in sys.argv: ind = sys.argv.index("-fmt") fmt = sys.argv[ind + 1] Dec_keys = [ 'site_dec', 'sample_dec', 'specimen_dec', 'measurement_dec', 'average_dec', 'none' ] Inc_keys = [ 'site_inc', 'sample_inc', 'specimen_inc', 'measurement_inc', 'average_inc', 'none' ] Tilt_keys = [ 'tilt_correction', 'site_tilt_correction', 'sample_tilt_correction', 'specimen_tilt_correction', 'none' ] Dir_type_keys = [ '', 'site_direction_type', 'sample_direction_type', 'specimen_direction_type' ] Name_keys = [ 'er_specimen_name', 'er_sample_name', 'er_site_name', 'pmag_result_name' ] data, file_type = pmag.magic_read(in_file) if file_type == 'pmag_results' and plot_key != "all": plot_key = plot_key + 's' # need plural for results table if verbose: print(len(data), ' records read from ', in_file) # # # find desired dec,inc data: # dir_type_key = '' # # get plotlist if not plotting all records # plotlist = [] if plot_key != "all": plots = pmag.get_dictitem(data, plot_key, '', 'F') for rec in plots: if rec[plot_key] not in plotlist: plotlist.append(rec[plot_key]) plotlist.sort() else: plotlist.append('All') for plot in plotlist: # if verbose: print plot DIblock = [] GCblock = [] SLblock, SPblock = [], [] title = plot mode = 1 dec_key, inc_key, tilt_key, name_key, k = "", "", "", "", 0 if plot != "All": odata = pmag.get_dictitem(data, plot_key, plot, 'T') else: odata = data # data for this obj for dec_key in Dec_keys: # get all records with this dec_key not blank Decs = pmag.get_dictitem(odata, dec_key, '', 'F') if len(Decs) > 0: break for inc_key in Inc_keys: # get all records with this inc_key not blank Incs = pmag.get_dictitem(Decs, inc_key, '', 'F') if len(Incs) > 0: break for tilt_key in Tilt_keys: if tilt_key in Incs[0].keys(): break # find the tilt_key for these records if tilt_key == 'none': # no tilt key in data, need to fix this with fake data which will be unknown tilt tilt_key = 'tilt_correction' for rec in Incs: rec[tilt_key] = '' # get all records matching specified coordinate system cdata = pmag.get_dictitem(Incs, tilt_key, coord, 'T') if coord == '0': # geographic # get all the blank records - assume geographic udata = pmag.get_dictitem(Incs, tilt_key, '', 'T') if len(cdata) == 0: crd = '' if len(udata) > 0: for d in udata: cdata.append(d) crd = crd + 'u' for name_key in Name_keys: # get all records with this name_key not blank Names = pmag.get_dictitem(cdata, name_key, '', 'F') if len(Names) > 0: break for dir_type_key in Dir_type_keys: # get all records with this direction type Dirs = pmag.get_dictitem(cdata, dir_type_key, '', 'F') if len(Dirs) > 0: break if dir_type_key == "": dir_type_key = 'direction_type' locations, site, sample, specimen = "", "", "", "" for rec in cdata: # pick out the data if 'er_location_name' in rec.keys( ) and rec['er_location_name'] != "" and rec[ 'er_location_name'] not in locations: locations = locations + \ rec['er_location_name'].replace("/", "")+"_" if 'er_location_names' in rec.keys( ) and rec['er_location_names'] != "": locs = rec['er_location_names'].split(':') for loc in locs: if loc not in locations: locations = locations + loc.replace("/", "") + '_' if plot_key == 'er_site_name' or plot_key == 'er_sample_name' or plot_key == 'er_specimen_name': site = rec['er_site_name'] if plot_key == 'er_sample_name' or plot_key == 'er_specimen_name': sample = rec['er_sample_name'] if plot_key == 'er_specimen_name': specimen = rec['er_specimen_name'] if plot_key == 'er_site_names' or plot_key == 'er_sample_names' or plot_key == 'er_specimen_names': site = rec['er_site_names'] if plot_key == 'er_sample_names' or plot_key == 'er_specimen_names': sample = rec['er_sample_names'] if plot_key == 'er_specimen_names': specimen = rec['er_specimen_names'] if dir_type_key not in rec.keys() or rec[dir_type_key] == "": rec[dir_type_key] = 'l' if 'magic_method_codes' not in rec.keys(): rec['magic_method_codes'] = "" DIblock.append([float(rec[dec_key]), float(rec[inc_key])]) SLblock.append([rec[name_key], rec['magic_method_codes']]) if rec[tilt_key] == coord and rec[dir_type_key] != 'l' and rec[ dec_key] != "" and rec[inc_key] != "": GCblock.append([float(rec[dec_key]), float(rec[inc_key])]) SPblock.append([rec[name_key], rec['magic_method_codes']]) if len(DIblock) == 0 and len(GCblock) == 0: if verbose: print("no records for plotting") sys.exit() if verbose: for k in range(len(SLblock)): print('%s %s %7.1f %7.1f' % (SLblock[k][0], SLblock[k][1], DIblock[k][0], DIblock[k][1])) for k in range(len(SPblock)): print('%s %s %7.1f %7.1f' % (SPblock[k][0], SPblock[k][1], GCblock[k][0], GCblock[k][1])) if len(DIblock) > 0: if contour == 0: pmagplotlib.plot_eq(FIG['eqarea'], DIblock, title) else: pmagplotlib.plot_eq_cont(FIG['eqarea'], DIblock) else: pmagplotlib.plot_net(FIG['eqarea']) if len(GCblock) > 0: for rec in GCblock: pmagplotlib.plot_circ(FIG['eqarea'], rec, 90., 'g') if plotE == 1: ppars = pmag.doprinc(DIblock) # get principal directions nDIs, rDIs, npars, rpars = [], [], [], [] for rec in DIblock: angle = pmag.angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']]) if angle > 90.: rDIs.append(rec) else: nDIs.append(rec) if dist == 'B': # do on whole dataset etitle = "Bingham confidence ellipse" bpars = pmag.dobingham(DIblock) for key in bpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (bpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (bpars[key])) npars.append(bpars['dec']) npars.append(bpars['inc']) npars.append(bpars['Zeta']) npars.append(bpars['Zdec']) npars.append(bpars['Zinc']) npars.append(bpars['Eta']) npars.append(bpars['Edec']) npars.append(bpars['Einc']) if dist == 'F': etitle = "Fisher confidence cone" if len(nDIs) > 2: fpars = pmag.fisher_mean(nDIs) for key in fpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (fpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (fpars[key])) mode += 1 npars.append(fpars['dec']) npars.append(fpars['inc']) npars.append(fpars['alpha95']) # Beta npars.append(fpars['dec']) isign = abs(fpars['inc']) / fpars['inc'] npars.append(fpars['inc'] - isign * 90.) # Beta inc npars.append(fpars['alpha95']) # gamma npars.append(fpars['dec'] + 90.) # Beta dec npars.append(0.) # Beta inc if len(rDIs) > 2: fpars = pmag.fisher_mean(rDIs) if verbose: print("mode ", mode) for key in fpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (fpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (fpars[key])) mode += 1 rpars.append(fpars['dec']) rpars.append(fpars['inc']) rpars.append(fpars['alpha95']) # Beta rpars.append(fpars['dec']) isign = abs(fpars['inc']) / fpars['inc'] rpars.append(fpars['inc'] - isign * 90.) # Beta inc rpars.append(fpars['alpha95']) # gamma rpars.append(fpars['dec'] + 90.) # Beta dec rpars.append(0.) # Beta inc if dist == 'K': etitle = "Kent confidence ellipse" if len(nDIs) > 3: kpars = pmag.dokent(nDIs, len(nDIs)) if verbose: print("mode ", mode) for key in kpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (kpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (kpars[key])) mode += 1 npars.append(kpars['dec']) npars.append(kpars['inc']) npars.append(kpars['Zeta']) npars.append(kpars['Zdec']) npars.append(kpars['Zinc']) npars.append(kpars['Eta']) npars.append(kpars['Edec']) npars.append(kpars['Einc']) if len(rDIs) > 3: kpars = pmag.dokent(rDIs, len(rDIs)) if verbose: print("mode ", mode) for key in kpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (kpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (kpars[key])) mode += 1 rpars.append(kpars['dec']) rpars.append(kpars['inc']) rpars.append(kpars['Zeta']) rpars.append(kpars['Zdec']) rpars.append(kpars['Zinc']) rpars.append(kpars['Eta']) rpars.append(kpars['Edec']) rpars.append(kpars['Einc']) else: # assume bootstrap if dist == 'BE': if len(nDIs) > 5: BnDIs = pmag.di_boot(nDIs) Bkpars = pmag.dokent(BnDIs, 1.) if verbose: print("mode ", mode) for key in Bkpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (Bkpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (Bkpars[key])) mode += 1 npars.append(Bkpars['dec']) npars.append(Bkpars['inc']) npars.append(Bkpars['Zeta']) npars.append(Bkpars['Zdec']) npars.append(Bkpars['Zinc']) npars.append(Bkpars['Eta']) npars.append(Bkpars['Edec']) npars.append(Bkpars['Einc']) if len(rDIs) > 5: BrDIs = pmag.di_boot(rDIs) Bkpars = pmag.dokent(BrDIs, 1.) if verbose: print("mode ", mode) for key in Bkpars.keys(): if key != 'n' and verbose: print(" ", key, '%7.1f' % (Bkpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (Bkpars[key])) mode += 1 rpars.append(Bkpars['dec']) rpars.append(Bkpars['inc']) rpars.append(Bkpars['Zeta']) rpars.append(Bkpars['Zdec']) rpars.append(Bkpars['Zinc']) rpars.append(Bkpars['Eta']) rpars.append(Bkpars['Edec']) rpars.append(Bkpars['Einc']) etitle = "Bootstrapped confidence ellipse" elif dist == 'BV': sym = { 'lower': ['o', 'c'], 'upper': ['o', 'g'], 'size': 3, 'edgecolor': 'face' } if len(nDIs) > 5: BnDIs = pmag.di_boot(nDIs) pmagplotlib.plot_eq_sym(FIG['bdirs'], BnDIs, 'Bootstrapped Eigenvectors', sym) if len(rDIs) > 5: BrDIs = pmag.di_boot(rDIs) if len(nDIs) > 5: # plot on existing plots pmagplotlib.plot_di_sym(FIG['bdirs'], BrDIs, sym) else: pmagplotlib.plot_eq(FIG['bdirs'], BrDIs, 'Bootstrapped Eigenvectors') if dist == 'B': if len(nDIs) > 3 or len(rDIs) > 3: pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], npars, 0) elif len(nDIs) > 3 and dist != 'BV': pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], npars, 0) if len(rDIs) > 3: pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], rpars, 0) elif len(rDIs) > 3 and dist != 'BV': pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], rpars, 0) if verbose: pmagplotlib.draw_figs(FIG) # files = {} locations = locations[:-1] for key in FIG.keys(): if pmagplotlib.isServer: # use server plot naming convention filename = 'LO:_'+locations+'_SI:_'+site+'_SA:_'+sample + \ '_SP:_'+specimen+'_CO:_'+crd+'_TY:_'+key+'_.'+fmt else: # use more readable plot naming convention filename = '' for item in [locations, site, sample, specimen, crd, key]: if item: item = item.replace(' ', '_') filename += item + '_' if filename.endswith('_'): filename = filename[:-1] filename += ".{}".format(fmt) files[key] = filename if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['eq'] = 'Equal Area Plot' FIG = pmagplotlib.add_borders(FIG, titles, black, purple) pmagplotlib.save_plots(FIG, files) elif verbose: ans = raw_input( " S[a]ve to save plot, [q]uit, Return to continue: ") if ans == "q": sys.exit() if ans == "a": pmagplotlib.save_plots(FIG, files) if plt: pmagplotlib.save_plots(FIG, files)
def main(): """ NAME eqarea_magic.py DESCRIPTION makes equal area projections from declination/inclination data SYNTAX eqarea_magic.py [command line options] INPUT takes magic formatted sites, samples, specimens, or measurements OPTIONS -h prints help message and quits -f FILE: specify input magic format file from magic, default='sites.txt' supported types=[measurements, specimens, samples, sites] -fsp FILE: specify specimen file name, (required if you want to plot measurements by sample) default='specimens.txt' -fsa FILE: specify sample file name, (required if you want to plot specimens by site) default='samples.txt' -fsi FILE: specify site file name, default='sites.txt' -flo FILE: specify location file name, default='locations.txt' -obj OBJ: specify level of plot [all, sit, sam, spc], default is all -crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted default is geographic, unspecified assumed geographic -fmt [svg,png,jpg] format for output plots -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors -c plot as colour contour -cm CM use color map CM [default is coolwarm] -sav save plot and quit quietly -no-tilt data are unoriented, allows plotting of measurement dec/inc NOTE all: entire file; sit: site; sam: sample; spc: specimen """ # initialize some default variables FIG = {} # plot dictionary FIG['eqarea'] = 1 # eqarea is figure 1 plotE = 0 plt = 0 # default to not plotting verbose = pmagplotlib.verbose # extract arguments from sys.argv if '-h' in sys.argv: print(main.__doc__) sys.exit() dir_path = pmag.get_named_arg("-WD", default_val=".") pmagplotlib.plot_init(FIG['eqarea'], 5, 5) in_file = pmag.get_named_arg("-f", default_val="sites.txt") in_file = pmag.resolve_file_name(in_file, dir_path) if "-WD" not in sys.argv: dir_path = os.path.split(in_file)[0] #full_in_file = os.path.join(dir_path, in_file) plot_by = pmag.get_named_arg("-obj", default_val="all").lower() spec_file = pmag.get_named_arg("-fsp", default_val="specimens.txt") samp_file = pmag.get_named_arg("-fsa", default_val="samples.txt") site_file = pmag.get_named_arg("-fsi", default_val="sites.txt") loc_file = pmag.get_named_arg("-flo", default_val="locations.txt") ignore_tilt = False if '-no-tilt' in sys.argv: ignore_tilt = True if plot_by == 'all': plot_key = 'all' elif plot_by == 'sit': plot_key = 'site' elif plot_by == 'sam': plot_key = 'sample' elif plot_by == 'spc': plot_key = 'specimen' else: plot_by = 'all' plot_key = 'all' if '-c' in sys.argv: contour = 1 if '-cm' in sys.argv: ind = sys.argv.index('-cm') color_map = sys.argv[ind + 1] else: color_map = 'coolwarm' else: contour = 0 if '-sav' in sys.argv: plt = 1 verbose = 0 if '-ell' in sys.argv: plotE = 1 ind = sys.argv.index('-ell') ell_type = sys.argv[ind + 1] ell_type = pmag.get_named_arg("-ell", "F") dist = ell_type.upper() # if dist type is unrecognized, use Fisher if dist not in ['F', 'K', 'B', 'BE', 'BV']: dist = 'F' if dist == "BV": FIG['bdirs'] = 2 pmagplotlib.plot_init(FIG['bdirs'], 5, 5) crd = pmag.get_named_arg("-crd", default_val="g") if crd == "s": coord = "-1" elif crd == "t": coord = "100" else: coord = "0" fmt = pmag.get_named_arg("-fmt", "svg") dec_key = 'dir_dec' inc_key = 'dir_inc' tilt_key = 'dir_tilt_correction' # Dir_type_keys=['','site_direction_type','sample_direction_type','specimen_direction_type'] # fnames = { "specimens": spec_file, "samples": samp_file, 'sites': site_file, 'locations': loc_file } contribution = cb.Contribution(dir_path, custom_filenames=fnames, single_file=in_file) try: contribution.propagate_location_to_samples() contribution.propagate_location_to_specimens() contribution.propagate_location_to_measurements() except KeyError as ex: pass # the object that contains the DataFrame + useful helper methods: table_name = list(contribution.tables.keys())[0] data_container = contribution.tables[table_name] # the actual DataFrame: data = data_container.df if plot_key != "all" and plot_key not in data.columns: print( "-E- You can't plot by {} with the data provided".format(plot_key)) return # add tilt key into DataFrame columns if it isn't there already if tilt_key not in data.columns: data.loc[:, tilt_key] = None if verbose: print(len(data), ' records read from ', in_file) # find desired dec,inc data: dir_type_key = '' # # get plotlist if not plotting all records # plotlist = [] if plot_key != "all": # return all where plot_key is not blank if plot_key not in data.columns: print('Can\'t plot by "{}". That header is not in infile: {}'. format(plot_key, in_file)) return plots = data[data[plot_key].notnull()] plotlist = plots[plot_key].unique() # grab unique values else: plotlist.append('All') for plot in plotlist: if verbose: print(plot) if plot == 'All': # plot everything at once plot_data = data else: # pull out only partial data plot_data = data[data[plot_key] == plot] DIblock = [] GCblock = [] # SLblock, SPblock = [], [] title = plot mode = 1 k = 0 if dec_key not in plot_data.columns: print("-W- No dec/inc data") continue # get all records where dec & inc values exist plot_data = plot_data[plot_data[dec_key].notnull() & plot_data[inc_key].notnull()] if plot_data.empty: continue # this sorting out is done in get_di_bock # if coord == '0': # geographic, use records with no tilt key (or tilt_key 0) # cond1 = plot_data[tilt_key].fillna('') == coord # cond2 = plot_data[tilt_key].isnull() # plot_data = plot_data[cond1 | cond2] # else: # not geographic coordinates, use only records with correct tilt_key # plot_data = plot_data[plot_data[tilt_key] == coord] # get metadata for naming the plot file locations = data_container.get_name('location', df_slice=plot_data) site = data_container.get_name('site', df_slice=plot_data) sample = data_container.get_name('sample', df_slice=plot_data) specimen = data_container.get_name('specimen', df_slice=plot_data) # make sure method_codes is in plot_data if 'method_codes' not in plot_data.columns: plot_data['method_codes'] = '' # get data blocks # would have to ignore tilt to use measurement level data DIblock = data_container.get_di_block(df_slice=plot_data, tilt_corr=coord, excl=['DE-BFP'], ignore_tilt=ignore_tilt) #SLblock = [[ind, row['method_codes']] for ind, row in plot_data.iterrows()] # get great circles great_circle_data = data_container.get_records_for_code('DE-BFP', incl=True, use_slice=True, sli=plot_data) if len(great_circle_data) > 0: gc_cond = great_circle_data[tilt_key] == coord GCblock = [[float(row[dec_key]), float(row[inc_key])] for ind, row in great_circle_data[gc_cond].iterrows()] #SPblock = [[ind, row['method_codes']] for ind, row in great_circle_data[gc_cond].iterrows()] if len(DIblock) > 0: if contour == 0: pmagplotlib.plot_eq(FIG['eqarea'], DIblock, title) else: pmagplotlib.plot_eq_cont(FIG['eqarea'], DIblock, color_map=color_map) else: pmagplotlib.plot_net(FIG['eqarea']) if len(GCblock) > 0: for rec in GCblock: pmagplotlib.plot_circ(FIG['eqarea'], rec, 90., 'g') if len(DIblock) == 0 and len(GCblock) == 0: if verbose: print("no records for plotting") continue # sys.exit() if plotE == 1: ppars = pmag.doprinc(DIblock) # get principal directions nDIs, rDIs, npars, rpars = [], [], [], [] for rec in DIblock: angle = pmag.angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']]) if angle > 90.: rDIs.append(rec) else: nDIs.append(rec) if dist == 'B': # do on whole dataset etitle = "Bingham confidence ellipse" bpars = pmag.dobingham(DIblock) for key in list(bpars.keys()): if key != 'n' and verbose: print(" ", key, '%7.1f' % (bpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (bpars[key])) npars.append(bpars['dec']) npars.append(bpars['inc']) npars.append(bpars['Zeta']) npars.append(bpars['Zdec']) npars.append(bpars['Zinc']) npars.append(bpars['Eta']) npars.append(bpars['Edec']) npars.append(bpars['Einc']) if dist == 'F': etitle = "Fisher confidence cone" if len(nDIs) > 2: fpars = pmag.fisher_mean(nDIs) for key in list(fpars.keys()): if key != 'n' and verbose: print(" ", key, '%7.1f' % (fpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (fpars[key])) mode += 1 npars.append(fpars['dec']) npars.append(fpars['inc']) npars.append(fpars['alpha95']) # Beta npars.append(fpars['dec']) isign = abs(fpars['inc']) / fpars['inc'] npars.append(fpars['inc'] - isign * 90.) # Beta inc npars.append(fpars['alpha95']) # gamma npars.append(fpars['dec'] + 90.) # Beta dec npars.append(0.) # Beta inc if len(rDIs) > 2: fpars = pmag.fisher_mean(rDIs) if verbose: print("mode ", mode) for key in list(fpars.keys()): if key != 'n' and verbose: print(" ", key, '%7.1f' % (fpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (fpars[key])) mode += 1 rpars.append(fpars['dec']) rpars.append(fpars['inc']) rpars.append(fpars['alpha95']) # Beta rpars.append(fpars['dec']) isign = abs(fpars['inc']) / fpars['inc'] rpars.append(fpars['inc'] - isign * 90.) # Beta inc rpars.append(fpars['alpha95']) # gamma rpars.append(fpars['dec'] + 90.) # Beta dec rpars.append(0.) # Beta inc if dist == 'K': etitle = "Kent confidence ellipse" if len(nDIs) > 3: kpars = pmag.dokent(nDIs, len(nDIs)) if verbose: print("mode ", mode) for key in list(kpars.keys()): if key != 'n' and verbose: print(" ", key, '%7.1f' % (kpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (kpars[key])) mode += 1 npars.append(kpars['dec']) npars.append(kpars['inc']) npars.append(kpars['Zeta']) npars.append(kpars['Zdec']) npars.append(kpars['Zinc']) npars.append(kpars['Eta']) npars.append(kpars['Edec']) npars.append(kpars['Einc']) if len(rDIs) > 3: kpars = pmag.dokent(rDIs, len(rDIs)) if verbose: print("mode ", mode) for key in list(kpars.keys()): if key != 'n' and verbose: print(" ", key, '%7.1f' % (kpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (kpars[key])) mode += 1 rpars.append(kpars['dec']) rpars.append(kpars['inc']) rpars.append(kpars['Zeta']) rpars.append(kpars['Zdec']) rpars.append(kpars['Zinc']) rpars.append(kpars['Eta']) rpars.append(kpars['Edec']) rpars.append(kpars['Einc']) else: # assume bootstrap if dist == 'BE': if len(nDIs) > 5: BnDIs = pmag.di_boot(nDIs) Bkpars = pmag.dokent(BnDIs, 1.) if verbose: print("mode ", mode) for key in list(Bkpars.keys()): if key != 'n' and verbose: print(" ", key, '%7.1f' % (Bkpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (Bkpars[key])) mode += 1 npars.append(Bkpars['dec']) npars.append(Bkpars['inc']) npars.append(Bkpars['Zeta']) npars.append(Bkpars['Zdec']) npars.append(Bkpars['Zinc']) npars.append(Bkpars['Eta']) npars.append(Bkpars['Edec']) npars.append(Bkpars['Einc']) if len(rDIs) > 5: BrDIs = pmag.di_boot(rDIs) Bkpars = pmag.dokent(BrDIs, 1.) if verbose: print("mode ", mode) for key in list(Bkpars.keys()): if key != 'n' and verbose: print(" ", key, '%7.1f' % (Bkpars[key])) if key == 'n' and verbose: print(" ", key, ' %i' % (Bkpars[key])) mode += 1 rpars.append(Bkpars['dec']) rpars.append(Bkpars['inc']) rpars.append(Bkpars['Zeta']) rpars.append(Bkpars['Zdec']) rpars.append(Bkpars['Zinc']) rpars.append(Bkpars['Eta']) rpars.append(Bkpars['Edec']) rpars.append(Bkpars['Einc']) etitle = "Bootstrapped confidence ellipse" elif dist == 'BV': sym = { 'lower': ['o', 'c'], 'upper': ['o', 'g'], 'size': 3, 'edgecolor': 'face' } if len(nDIs) > 5: BnDIs = pmag.di_boot(nDIs) pmagplotlib.plot_eq_sym(FIG['bdirs'], BnDIs, 'Bootstrapped Eigenvectors', sym) if len(rDIs) > 5: BrDIs = pmag.di_boot(rDIs) if len(nDIs) > 5: # plot on existing plots pmagplotlib.plot_di_sym(FIG['bdirs'], BrDIs, sym) else: pmagplotlib.plot_eq(FIG['bdirs'], BrDIs, 'Bootstrapped Eigenvectors') if dist == 'B': if len(nDIs) > 3 or len(rDIs) > 3: pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], npars, 0) elif len(nDIs) > 3 and dist != 'BV': pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], npars, 0) if len(rDIs) > 3: pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], rpars, 0) elif len(rDIs) > 3 and dist != 'BV': pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], rpars, 0) for key in list(FIG.keys()): files = {} filename = pmag.get_named_arg('-fname') if filename: # use provided filename filename += '.' + fmt elif pmagplotlib.isServer: # use server plot naming convention filename = 'LO:_'+locations+'_SI:_'+site+'_SA:_'+sample + \ '_SP:_'+specimen+'_CO:_'+crd+'_TY:_'+key+'_.'+fmt elif plot_key == 'all': filename = 'all' if 'location' in plot_data.columns: locs = plot_data['location'].unique() loc_string = "_".join( [str(loc).replace(' ', '_') for loc in locs]) filename += "_" + loc_string filename += "_" + crd + "_" + key filename += ".{}".format(fmt) else: # use more readable naming convention filename = '' # fix this if plot_by is location , for example use_names = { 'location': [locations], 'site': [locations, site], 'sample': [locations, site, sample], 'specimen': [locations, site, sample, specimen] } use = use_names[plot_key] use.extend([crd, key]) # [locations, site, sample, specimen, crd, key]: for item in use: if item: item = item.replace(' ', '_') filename += item + '_' if filename.endswith('_'): filename = filename[:-1] filename += ".{}".format(fmt) files[key] = filename if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['eqarea'] = 'Equal Area Plot' FIG = pmagplotlib.add_borders(FIG, titles, black, purple) pmagplotlib.save_plots(FIG, files) elif plt: pmagplotlib.save_plots(FIG, files) continue if verbose: pmagplotlib.draw_figs(FIG) ans = input(" S[a]ve to save plot, [q]uit, Return to continue: ") if ans == "q": sys.exit() if ans == "a": pmagplotlib.save_plots(FIG, files) continue
def main(): """ NAME foldtest_magic.py DESCRIPTION does a fold test (Tauxe, 2010) on data INPUT FORMAT pmag_specimens format file, er_samples.txt format file (for bedding) SYNTAX foldtest_magic.py [command line options] OPTIONS -h prints help message and quits -f pmag_sites formatted file [default is pmag_sites.txt] -fsa er_samples formatted file [default is er_samples.txt] -fsi er_sites formatted file -exc use pmag_criteria.txt to set acceptance criteria -n NB, set number of bootstraps, default is 1000 -b MIN, MAX, set bounds for untilting, default is -10, 150 -fmt FMT, specify format - default is svg -sav saves plots and quits OUTPUT Geographic: is an equal area projection of the input data in original coordinates Stratigraphic: is an equal area projection of the input data in tilt adjusted coordinates % Untilting: The dashed (red) curves are representative plots of maximum eigenvalue (tau_1) as a function of untilting The solid line is the cumulative distribution of the % Untilting required to maximize tau for all the bootstrapped data sets. The dashed vertical lines are 95% confidence bounds on the % untilting that yields the most clustered result (maximum tau_1). Command line: prints out the bootstrapped iterations and finally the confidence bounds on optimum untilting. If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated If the 95% conf bounds include 100, then a post-tilt magnetization is indicated If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is possible as is vertical axis rotation or other pathologies """ kappa = 0 nb = 1000 # number of bootstraps min, max = -10, 150 dir_path = '.' infile, orfile = 'pmag_sites.txt', 'er_samples.txt' critfile = 'pmag_criteria.txt' dipkey, azkey = 'sample_bed_dip', 'sample_bed_dip_direction' fmt = 'svg' plot = 0 if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-n' in sys.argv: ind = sys.argv.index('-n') nb = int(sys.argv[ind + 1]) if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] if '-sav' in sys.argv: plot = 1 if '-b' in sys.argv: ind = sys.argv.index('-b') min = int(sys.argv[ind + 1]) max = int(sys.argv[ind + 2]) if '-f' in sys.argv: ind = sys.argv.index('-f') infile = sys.argv[ind + 1] if '-fsa' in sys.argv: ind = sys.argv.index('-fsa') orfile = sys.argv[ind + 1] elif '-fsi' in sys.argv: ind = sys.argv.index('-fsi') orfile = sys.argv[ind + 1] dipkey, azkey = 'site_bed_dip', 'site_bed_dip_direction' orfile = dir_path + '/' + orfile infile = dir_path + '/' + infile critfile = dir_path + '/' + critfile data, file_type = pmag.magic_read(infile) ordata, file_type = pmag.magic_read(orfile) if '-exc' in sys.argv: crits, file_type = pmag.magic_read(critfile) for crit in crits: if crit['pmag_criteria_code'] == "DE-SITE": SiteCrit = crit break # get to work # PLTS = {'geo': 1, 'strat': 2, 'taus': 3} # make plot dictionary pmagplotlib.plot_init(PLTS['geo'], 5, 5) pmagplotlib.plot_init(PLTS['strat'], 5, 5) pmagplotlib.plot_init(PLTS['taus'], 5, 5) GEOrecs = pmag.get_dictitem(data, 'site_tilt_correction', '0', 'T') if len(GEOrecs) > 0: # have some geographic data DIDDs = [] # set up list for dec inc dip_direction, dip for rec in GEOrecs: # parse data dip, dip_dir = 0, -1 Dec = float(rec['site_dec']) Inc = float(rec['site_inc']) orecs = pmag.get_dictitem(ordata, 'er_site_name', rec['er_site_name'], 'T') if len(orecs) > 0: if orecs[0][azkey] != "": dip_dir = float(orecs[0][azkey]) if orecs[0][dipkey] != "": dip = float(orecs[0][dipkey]) if dip != 0 and dip_dir != -1: if '-exc' in sys.argv: keep = 1 for key in list(SiteCrit.keys()): if 'site' in key and SiteCrit[key] != "" and rec[ key] != "" and key != 'site_alpha95': if float(rec[key]) < float(SiteCrit[key]): keep = 0 print(rec['er_site_name'], key, rec[key]) if key == 'site_alpha95' and SiteCrit[ key] != "" and rec[key] != "": if float(rec[key]) > float(SiteCrit[key]): keep = 0 if keep == 1: DIDDs.append([Dec, Inc, dip_dir, dip]) else: DIDDs.append([Dec, Inc, dip_dir, dip]) else: print('no geographic directional data found') sys.exit() pmagplotlib.plot_eq(PLTS['geo'], DIDDs, 'Geographic') data = numpy.array(DIDDs) D, I = pmag.dotilt_V(data) TCs = numpy.array([D, I]).transpose() pmagplotlib.plot_eq(PLTS['strat'], TCs, 'Stratigraphic') if not set_env.IS_WIN: if plot == 0: pmagplotlib.draw_figs(PLTS) Percs = list(range(min, max)) Cdf, Untilt = [], [] pylab.figure(num=PLTS['taus']) print('doing ', nb, ' iterations...please be patient.....') for n in range( nb): # do bootstrap data sets - plot first 25 as dashed red line if n % 50 == 0: print(n) Taus = [] # set up lists for taus PDs = pmag.pseudo(DIDDs) if kappa != 0: for k in range(len(PDs)): d, i = pmag.fshdev(kappa) dipdir, dip = pmag.dodirot(d, i, PDs[k][2], PDs[k][3]) PDs[k][2] = dipdir PDs[k][3] = dip for perc in Percs: tilt = numpy.array([1., 1., 1., 0.01 * perc]) D, I = pmag.dotilt_V(PDs * tilt) TCs = numpy.array([D, I]).transpose() ppars = pmag.doprinc(TCs) # get principal directions Taus.append(ppars['tau1']) if n < 25: pylab.plot(Percs, Taus, 'r--') # tilt that gives maximum tau Untilt.append(Percs[Taus.index(numpy.max(Taus))]) Cdf.append(float(n) / float(nb)) pylab.plot(Percs, Taus, 'k') pylab.xlabel('% Untilting') pylab.ylabel('tau_1 (red), CDF (green)') Untilt.sort() # now for CDF of tilt of maximum tau pylab.plot(Untilt, Cdf, 'g') lower = int(.025 * nb) upper = int(.975 * nb) pylab.axvline(x=Untilt[lower], ymin=0, ymax=1, linewidth=1, linestyle='--') pylab.axvline(x=Untilt[upper], ymin=0, ymax=1, linewidth=1, linestyle='--') tit = '%i - %i %s' % (Untilt[lower], Untilt[upper], 'Percent Unfolding') print(tit) pylab.title(tit) if plot == 0: pmagplotlib.draw_figs(PLTS) ans = input('S[a]ve all figures, <Return> to quit \n ') if ans != 'a': print("Good bye") sys.exit() files = {} for key in list(PLTS.keys()): files[key] = ('foldtest_' + '%s' % (key.strip()[:2]) + '.' + fmt) pmagplotlib.save_plots(PLTS, files)