numParts = args.numParts numExtensionParts = args.numExtensionParts extensionPatchSize = args.extensionPatchSize if args.log: from pnet.vzlog import default as vz ag.set_verbose(True) sup_ims = [] sup_labels = [] net = pnet.PartsNet.load(args.lowerPartsModel) layers = [ #pnet.IntensityThresholdLayer(), pnet.ExtensionPartsLayer(num_parts = numParts, num_components = numExtensionParts, part_shape = (extensionPatchSize, extensionPatchSize), lowerLayerShape = (6,6)) ] clnet = pnet.PartsNet([net] + layers) ims, label = ag.io.load_cifar10('training') clnet.train(ims) clnet.save(args.model) ''' classes = range(10) classificationTraining = 5000 rs = np.random.RandomState(training_seed) for d in classes: ims0,tmpLabel = ag.io.load_cifar10('training', classes = [d])
ag.set_verbose(True) sup_ims = [] sup_labels = [] net = None layers = [ #pnet.IntensityThresholdLayer(), pnet.EdgeLayer(k=5, radius=1, spread='orthogonal', minimum_contrast=0.05), pnet.PartsLayer(100, (6, 6), settings=dict(outer_frame=0, threshold=40, samples_per_image=40, max_samples=1000000, min_prob=0.005, )), pnet.ExtensionPartsLayer(num_parts = 100, num_components = 10, part_shape = (12,12), lowerLayerShape = (6,6)), pnet.PoolingLayer(shape=(4,4), strides=(4, 4)), pnet.MixtureClassificationLayer(n_components=1, min_prob=0.0001,block_size=200), #pnet.SVMClassificationLayer(C=None) ] net = pnet.PartsNet(layers) digits = range(10) ims = ag.io.load_mnist('training', selection=slice(10000), return_labels=False) net.train(ims) #sup_ims = [] #sup_labels = []
radius=1, spread='orthogonal', minimum_contrast=0.05), pnet.PartsLayer(100, (3, 3), settings=dict( outer_frame=0, threshold=10, samples_per_image=20, max_samples=1000000, min_prob=0.005, )), #pnet.PoolingLayer(shape=(4,4), strides=(4, 4)), #pnet.MixtureClassificationLayer(n_components=1, min_prob=0.0001,block_size=200), pnet.ExtensionPartsLayer(num_parts=100, num_components=10, part_shape=(9, 9), lowerLayerShape=(3, 3)), #pnet.ExtensionPoolingLayer(n_parts = 1000, grouping_type = 'rbm', pooling_type = 'distance', pooling_distance = 5, weights_file = None, save_weights_file = None, settings = {}) pnet.PoolingLayer(shape=(4, 4), strides=(4, 4)), pnet.SVMClassificationLayer(C=None) ] net = pnet.PartsNet(layers) ims, label = ag.io.load_cifar10('training', selection=slice(0, 1000)) net.train(ims) classes = range(10) classificationTraining = 10 rs = np.random.RandomState(training_seed)