def __init__(self, learning_rate): n_features = eval('*'.join(str(e) for e in DB.feature_shape)) n_classes = DB.n_classes self.lr = nn.parameter(learning_rate) # Step 3.1: set up learnable parameters/weights ####################################################################### "*** YOUR CODE HERE ***" ####################################################################### self.param = { "w1": nn.parameter(np.random.uniform(-0.01, 0.01, size=[n_features,neurons])), "w2": nn.parameter(np.random.uniform(-0.01, 0.01, size=[neurons, n_classes])), "b1": nn.parameter(np.random.uniform(-0.01, 0.01, size=[neurons])), "b2": nn.parameter(np.random.uniform(-0.01, 0.01, size=[n_classes])), }
def __init__(self, learning_rate): n_features = eval('*'.join(str(e) for e in DB.feature_shape)) n_classes = DB.n_classes self.lr = nn.parameter(learning_rate) # Step 3.1: set up learnable parameters/weights. w's should be drawn # from a zero-mean normal distribution. b's should be set to 0 ####################################################################### "*** YOUR CODE HERE ***" ####################################################################### self.param = { 'w1': nn.parameter.from_numpy( numpy.random.normal(0, 0.01, [n_features, 256])), 'w2': nn.parameter.from_numpy(numpy.random.normal(0, 0.01, [256, 256])), 'w3': nn.parameter.from_numpy(numpy.random.normal(0, 0.01, [256, 256])), 'w4': nn.parameter.from_numpy(numpy.random.normal(0, 0.01, [256, 256])), 'w5': nn.parameter.from_numpy( numpy.random.normal(0, 0.01, [256, n_classes])), 'b1': nn.parameter.zeros(256), 'b2': nn.parameter.zeros(256), 'b3': nn.parameter.zeros(256), 'b4': nn.parameter.zeros(256), 'b5': nn.parameter.zeros(n_classes) }
def __init__(self, learning_rate): n_features = eval('*'.join(str(e) for e in DB.feature_shape)) n_classes = DB.n_classes self.lr = nn.parameter(learning_rate) # Step 3.1: set up learnable parameters/weights. w's should be drawn # from a zero-mean normal distribution. b's should be set to 0 ####################################################################### "*** YOUR CODE HERE ***" ####################################################################### self.param = { # "name": nn.parameter(blah, blah) "w": nn.parameter(np.random.uniform(-0.1, 0.1, [n_features, 512])), "b": nn.parameter.zeros([512]), "w1": nn.parameter(np.random.uniform(-0.05, 0.05, [512, 256])), "b1": nn.parameter.zeros([256]), "w2": nn.parameter(np.random.uniform(-0.01, 0.01, [256, n_classes])), "b2": nn.parameter.zeros([n_classes]), }
def __init__(self, learning_rate): n_features = eval('*'.join(str(e) for e in DB.feature_shape)) n_classes = DB.n_classes self.lr = nn.parameter(learning_rate) # Step 3.1: set up learnable parameters/weights ####################################################################### "*** YOUR CODE HERE ***" ####################################################################### self.param = { "w1": nn.parameter( np.add(np.zeros((n_features, intermediate_val_1)), np.random.rand(n_features, intermediate_val_1) - 0.5)), "w2": nn.parameter( np.add( np.zeros((intermediate_val_1, intermediate_val_2)), np.random.rand(intermediate_val_1, intermediate_val_2) - 0.5)), "w3": nn.parameter( np.add( np.zeros((intermediate_val_2, intermediate_val_3)), np.random.rand(intermediate_val_2, intermediate_val_3) - 0.5)), "w4": nn.parameter( np.add(np.zeros((intermediate_val_3, n_classes)), np.random.rand(intermediate_val_3, n_classes) - 0.5)), "b1": nn.parameter.zeros(intermediate_val_1), "b2": nn.parameter.zeros(intermediate_val_2), "b3": nn.parameter.zeros(intermediate_val_3), "b4": nn.parameter.zeros(n_classes), }
def __init__(self, learning_rate): n_features = eval('*'.join(str(e) for e in DB.feature_shape)) n_classes = DB.n_classes self.lr = nn.parameter(learning_rate) # Step 3.1: set up learnable parameters/weights ####################################################################### "*** YOUR CODE HERE ***" ####################################################################### self.param = { #Weight1 "w1": nn.parameter( np.asmatrix( np.random.rand(n_features, hidden_layer_level_1_size) - 0.50)), #Weight2 "w2": nn.parameter( np.asmatrix( np.random.rand(hidden_layer_level_1_size, hidden_layer_level_2_size) - 0.5)), #Weight3 "w3": nn.parameter( np.asmatrix( np.random.rand(hidden_layer_level_2_size, n_classes) - 0.50)), #Bias1 "b1": nn.parameter.zeros(hidden_layer_level_1_size), #Bias2 "b2": nn.parameter.zeros(hidden_layer_level_2_size), #Bias3 "b3": nn.parameter.zeros(n_classes), }