コード例 #1
0
def optimization_trial(pname, data, epsilon, nthreads, maxeval, num):
    nsamples = nthreads
    print("Trial Number:" + str(num))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = \
        MoSyncStrategyNoConstraints(
            worker_id=0, data=data,
            maxeval=maxeval, nsamples=nsamples,
            exp_design=SymmetricLatinHypercube(dim=data.dim, npts=2*(data.dim+1)),
            response_surface=RBFInterpolant(kernel=CubicKernel, tail=LinearTail,
                                            maxp=maxeval),
            sampling_method=EvolutionaryAlgorithm(data,epsilons=epsilon, cand_flag=1),
            archiving_method=EpsilonArchive(size_max=200,epsilon=epsilon))

    # Launch the threads and give them access to the objective function
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    # Run the optimization strategy
    def merit(r):
        return r.value[0]
    result = controller.run(merit=merit)

    # Save results to File
    X = np.loadtxt('final.txt')
    controller.strategy.save_plot(num)
    fname = pname + '_' + str(data.dim) + '_EGOMORS_'  + str(maxeval) + '_'  + str(num) + '_' + str(nthreads) + '.txt'
    np.savetxt(fname, X)
コード例 #2
0
def main():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    logging.basicConfig(filename="./logfiles/test_mixed_integer_constraints.log",
                        level=logging.INFO)

    print("\nNumber of threads: 4")
    print("Maximum number of evaluations: 200")
    print("Search strategy: CandidateDYCORS, CandidateDYCORS_INT"
          ", CandidateDYCORS_CONT, CandidateUniform")
    print("Experimental design: Symmetric Latin Hypercube")
    print("Surrogate: Cubic RBF")

    nthreads = 4
    maxeval = 200
    nsamples = nthreads

    data = LinearMI()
    print(data.info)

    def feasible_merit(record):
        "Merit function for ordering final answers -- kill infeasible x"
        x = record.params[0].reshape((1, record.params[0].shape[0]))
        if np.max(data.eval_ineq_constraints(x)) > 0:
            return np.inf
        return record.value

    exp_design = SymmetricLatinHypercube(dim=data.dim, npts=2*(data.dim+1))
    response_surface = RBFInterpolant(surftype=CubicRBFSurface, maxp=maxeval)

    # Use a multi-search strategy for candidate points
    search_proc = MultiSearchStrategy(
        [CandidateDYCORS(data=data, numcand=100*data.dim),
         CandidateUniform(data=data, numcand=100*data.dim),
         CandidateDYCORS_INT(data=data, numcand=100*data.dim),
         CandidateDYCORS_CONT(data=data, numcand=100*data.dim)],
        [0, 1, 2, 3])

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = \
        SyncStrategyPenalty(
            worker_id=0, data=data,
            response_surface=response_surface,
            maxeval=maxeval, nsamples=nsamples,
            exp_design=exp_design,
            search_procedure=search_proc)

    # Launch the threads
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    result = controller.run(merit=feasible_merit)
    best, xbest = result.value, result.params[0]

    print('Best value: {0}'.format(best))
    print('Best solution: {0}\n'.format(
        np.array_str(xbest, max_line_width=np.inf,
                     precision=5, suppress_small=True)))
コード例 #3
0
def test_srbf_async():
    max_evals = 200
    rbf = RBFInterpolant(dim=ackley.dim,
                         lb=ackley.lb,
                         ub=ackley.ub,
                         kernel=CubicKernel(),
                         tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(dim=ackley.dim,
                                   num_pts=2 * (ackley.dim + 1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(max_evals=max_evals,
                                       opt_prob=ackley,
                                       exp_design=slhd,
                                       surrogate=rbf,
                                       asynchronous=True,
                                       batch_size=None)

    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)
    controller.run()

    check_strategy(controller)
コード例 #4
0
def init():
    print("\nInitializing run...")

    rbf = RBFInterpolant(
        dim=ackley.dim, kernel=CubicKernel(),
        tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(
        dim=ackley.dim, num_pts=2*(ackley.dim+1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(
        max_evals=max_evals, opt_prob=ackley, exp_design=slhd,
        surrogate=rbf, asynchronous=True, batch_size=num_threads)

    print("Number of threads: {}".format(num_threads))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(rbf.__class__.__name__))

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)

    # Wrap controller in checkpoint object
    controller = CheckpointController(controller, fname=fname)
    result = controller.run()
    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0], max_line_width=np.inf,
                     precision=5, suppress_small=True)))
コード例 #5
0
def example_sop():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/example_simple.log"):
        os.remove("./logfiles/example_simple.log")
    logging.basicConfig(filename="./logfiles/example_simple.log",
                        level=logging.INFO)

    print("\nNumber of threads: 8")
    print("Maximum number of evaluations: 500")
    print("Sampling method: CandidateDYCORS")
    print("Experimental design: Symmetric Latin Hypercube")
    print("Surrogate: Cubic RBF")

    num_threads = 8
    max_evals = 500

    ackley = Ackley(dim=10)
    rbf = RBFInterpolant(dim=ackley.dim,
                         lb=ackley.lb,
                         ub=ackley.ub,
                         kernel=CubicKernel(),
                         tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(dim=ackley.dim,
                                   num_pts=2 * (ackley.dim + 1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SOPStrategy(
        max_evals=max_evals,
        opt_prob=ackley,
        exp_design=slhd,
        surrogate=rbf,
        asynchronous=False,
        ncenters=num_threads,
        batch_size=num_threads,
    )

    print("Number of threads: {}".format(num_threads))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(rbf.__class__.__name__))

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print("Best value found: {0}".format(result.value))
    print("Best solution found: {0}\n".format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
コード例 #6
0
def example_extra_vals():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/example_extra_vals.log"):
        os.remove("./logfiles/example_extra_vals.log")
    logging.basicConfig(filename="./logfiles/example_extra_vals.log",
                        level=logging.INFO)

    num_threads = 4
    max_evals = 500

    ackley = Ackley(dim=10)
    num_extra = 10
    extra = np.random.uniform(ackley.lb, ackley.ub, (num_extra, ackley.dim))
    extra_vals = np.nan * np.ones((num_extra, 1))
    for i in range(num_extra):  # Evaluate every second point
        if i % 2 == 0:
            extra_vals[i] = ackley.eval(extra[i, :])

    rbf = RBFInterpolant(dim=ackley.dim, kernel=CubicKernel(),
                         tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(dim=ackley.dim, num_pts=2*(ackley.dim+1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(
        max_evals=max_evals, opt_prob=ackley, exp_design=slhd,
        surrogate=rbf, asynchronous=True, batch_size=num_threads,
        extra_points=extra, extra_vals=extra_vals)

    print("Number of threads: {}".format(num_threads))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(rbf.__class__.__name__))

    # Append the known function values to the POAP database since
    # POAP won't evaluate these points
    for i in range(len(extra_vals)):
        if not np.isnan(extra_vals[i]):
            record = EvalRecord(
                params=(np.ravel(extra[i, :]),), status='completed')
            record.value = extra_vals[i]
            record.feasible = True
            controller.fevals.append(record)

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0], max_line_width=np.inf,
                     precision=5, suppress_small=True)))
コード例 #7
0
ファイル: pySOT_runner.py プロジェクト: zgsxwsdxg/HORD
def main():
    log_file = os.path.splitext(__file__)[0] + ".log"
    millis = int(round(time.time() * 1000))
    print('Started: ' + str(datetime.now()) + ' (' + str(millis) + ')')
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/" + log_file):
        os.remove("./logfiles/" + log_file)
    logging.basicConfig(filename="./logfiles/" + log_file, level=logging.INFO)

    nthreads = int(sys.argv[1])
    maxeval = int(sys.argv[2])
    seed = sys.argv[3]
    server = sys.argv[4]

    np.random.seed(int(seed))

    print("\nNumber of threads: " + str(nthreads))
    print("Maximum number of evaluations: " + str(maxeval))
    print("Search strategy: Candidate DyCORS")
    print("Experimental design: Symmetric Latin Hypercube")
    print("Surrogate: Cubic RBF")
    print(
        'best\tf_eval_time\tresult\ttestset_result\tf_eval_count\twallclock_time\thyper-parameters'
    )
    nsamples = nthreads

    data = TorchOptim(seed=seed, server=server)

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = \
        SyncStrategyNoConstraints(
            worker_id=0, data=data,
            maxeval=maxeval, nsamples=nsamples,
            exp_design=SymmetricLatinHypercube(dim=data.dim, npts=2*(data.dim+1)),
            response_surface=RBFInterpolant(surftype=CubicRBFSurface, maxp=maxeval),
            sampling_method=CandidateDYCORS(data=data, numcand=500*data.dim))

    # Launch the threads and give them access to the objective function
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))

    millis = int(round(time.time() * 1000))
    print('Ended: ' + str(datetime.now()) + ' (' + str(millis) + ')')
コード例 #8
0
ファイル: test_penalty.py プロジェクト: yuhaibo2017/pySOT
def main():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/test_penalty.log"):
        os.remove("./logfiles/test_penalty.log")
    logging.basicConfig(filename="./logfiles/test_penalty.log",
                        level=logging.INFO)

    print("\nNumber of threads: 4")
    print("Maximum number of evaluations: 500")
    print("Sampling method: CandidateDYCORS")
    print("Experimental design: Symmetric Latin Hypercube")
    print("Surrogate: Cubic RBF")

    nthreads = 4
    maxeval = 500
    penalty = 1e6
    nsamples = nthreads

    data = Keane(dim=10)
    print(data.info)

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = \
        SyncStrategyPenalty(
            worker_id=0, data=data,
            maxeval=maxeval, nsamples=nsamples,
            response_surface=RBFInterpolant(kernel=CubicKernel, tail=LinearTail, maxp=maxeval),
            exp_design=SymmetricLatinHypercube(dim=data.dim, npts=2*(data.dim+1)),
            sampling_method=CandidateDYCORS(data=data, numcand=100*data.dim),
            penalty=penalty)

    # Launch the threads
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    # Use penalty based merit
    def feasible_merit(record):
        xx = np.zeros((1, record.params[0].shape[0]))
        xx[0, :] = record.params[0]
        return record.value + controller.strategy.penalty_fun(xx)[0, 0]

    result = controller.run(merit=feasible_merit)
    best, xbest = result.value, result.params[0]

    print('Best value: {0}'.format(best))
    print('Best solution: {0}'.format(
        np.array_str(xbest,
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
    print('Feasible: {0}\n'.format(
        np.max(data.eval_ineq_constraints(xbest)) <= 0.0))
コード例 #9
0
def main():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/test_projection.log"):
        os.remove("./logfiles/test_projection.log")
    logging.basicConfig(filename="./logfiles/test_projection.log",
                        level=logging.INFO)

    print("\nNumber of threads: 4")
    print("Maximum number of evaluations: 1000")
    print("Sampling method: CandidateDYCORS")
    print("Experimental design: Latin Hypercube")
    print("Surrogate: Cubic RBF")

    nthreads = 4
    maxeval = 1000
    nsamples = nthreads

    data = AckleyUnit(dim=10)
    print(data.info)

    def projection(x):
        return x / np.linalg.norm(x)

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = \
        SyncStrategyProjection(
            worker_id=0, data=data,
            maxeval=maxeval, nsamples=nsamples,
            exp_design=LatinHypercube(dim=data.dim, npts=2*(data.dim+1)),
            response_surface=RBFInterpolant(kernel=CubicKernel, tail=LinearTail, maxp=maxeval),
            sampling_method=CandidateDYCORS(data=data, numcand=100*data.dim),
            proj_fun=projection
        )

    # Launch the threads and give them access to the objective function
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}'.format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
    print('||x||_2 = {0}\n'.format(np.linalg.norm(result.params[0])))
コード例 #10
0
def test_random_sampling():
    max_evals = 500
    controller = ThreadController()
    controller.strategy = RandomStrategy(opt_prob=ackley, max_evals=max_evals)

    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)
    controller.run()

    assert len(controller.fevals) == max_evals
    for rec in controller.fevals:
        assert np.all(rec.params[0] <= ackley.ub)
        assert np.all(rec.params[0] >= ackley.lb)
コード例 #11
0
ファイル: example_mars.py プロジェクト: good-repos/pySOT-1
def example_mars():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/example_mars.log"):
        os.remove("./logfiles/example_mars.log")
    logging.basicConfig(filename="./logfiles/example_mars.log",
                        level=logging.INFO)

    num_threads = 4
    max_evals = 200

    ackley = Ackley(dim=5)
    try:
        mars = MARSInterpolant(dim=ackley.dim, lb=ackley.lb, ub=ackley.ub)
    except Exception as e:
        print(str(e))
        return
    slhd = SymmetricLatinHypercube(dim=ackley.dim,
                                   num_pts=2 * (ackley.dim + 1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(max_evals=max_evals,
                                       opt_prob=ackley,
                                       exp_design=slhd,
                                       surrogate=mars,
                                       asynchronous=True,
                                       batch_size=num_threads)

    print("Number of threads: {}".format(num_threads))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(mars.__class__.__name__))

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print("Best value found: {0}".format(result.value))
    print("Best solution found: {0}\n".format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
コード例 #12
0
ファイル: test_constraints.py プロジェクト: evayang234/pySOT
def main():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    logging.basicConfig(filename="./logfiles/test_constraints.log",
                        level=logging.INFO)

    print("\nNumber of threads: 4")
    print("Maximum number of evaluations: 500")
    print("Search strategy: CandidateDYCORS")
    print("Experimental design: Latin Hypercube")
    print("Surrogate: Cubic RBF with median capping")

    nthreads = 4
    maxeval = 500
    nsamples = nthreads

    data = Keane(dim=10)
    print(data.info)

    def feasible_merit(record):
        """Merit function for ordering final answers -- kill infeasible x"""
        x = record.params[0].reshape((1, record.params[0].shape[0]))
        if np.max(data.eval_ineq_constraints(x)) > 0:
            return np.inf
        return record.value

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = \
        SyncStrategyPenalty(
            worker_id=0, data=data,
            maxeval=maxeval, nsamples=nsamples,
            response_surface=RSCapped(RBFInterpolant(surftype=CubicRBFSurface, maxp=maxeval)),
            exp_design=LatinHypercube(dim=data.dim, npts=2*(data.dim+1)),
            search_procedure=CandidateDYCORS(data=data, numcand=100*data.dim))

    # Launch the threads
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    result = controller.run(merit=feasible_merit)
    best, xbest = result.value, result.params[0]

    print('Best value: {0}'.format(best))
    print('Best solution: {0}\n'.format(
        np.array_str(xbest, max_line_width=np.inf,
                     precision=5, suppress_small=True)))
コード例 #13
0
def resume():
    print("Resuming run...\n")
    controller = ThreadController()

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)

    # Wrap controller in checkpoint object
    controller = CheckpointController(controller, fname=fname)
    result = controller.resume()
    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0], max_line_width=np.inf,
                     precision=5, suppress_small=True)))
コード例 #14
0
def main():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/test_simple_time.log"):
        os.remove("./logfiles/test_simple_time.log")
    logging.basicConfig(filename="./logfiles/test_simple_time.log",
                        level=logging.INFO)

    print("\nNumber of threads: 4")
    print("Time budget: 30 seconds")
    print("Sampling method: CandidateDYCORS")
    print("Experimental design: Symmetric Latin Hypercube")
    print("Surrogate: Cubic RBF")

    nthreads = 4
    maxeval = -30
    nsamples = nthreads

    data = Ackley(dim=10)
    print(data.info)

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = \
        SyncStrategyNoConstraints(
            worker_id=0, data=data,
            maxeval=maxeval, nsamples=nsamples,
            exp_design=SymmetricLatinHypercube(dim=data.dim, npts=2*(data.dim+1)),
            response_surface=RBFInterpolant(kernel=CubicKernel, tail=LinearTail,
                                            maxp=1000),
            sampling_method=CandidateDYCORS(data=data, numcand=100*data.dim))

    # Launch the threads and give them access to the objective function
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    # Run the optimization strategy
    start_time = time.time()
    result = controller.run()
    end_time = time.time()

    print('Run time: {0} seconds'.format(end_time - start_time))
    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0], max_line_width=np.inf,
                     precision=5, suppress_small=True)))
コード例 #15
0
def main():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/test_simple.log"):
        os.remove("./logfiles/test_simple.log")
    logging.basicConfig(filename="./logfiles/test_simple.log",
                        level=logging.INFO)

    nthreads = 4
    maxeval = 100
    nsamples = nthreads

    print("\nNumber of threads: " + str(nthreads))
    print("Maximum number of evaluations: " + str(maxeval))
    print("Sampling method: Mixed")
    print("Experimental design: Symmetric Latin Hypercube")
    print("Surrogate: Cubic RBF")

    #data = LZF3()
    data = DTLZ4(nobj=2)
    num = 1
    epsilons = [0.05, 0.05]
    # Create a strategy and a controller
    controller = ThreadController()
    #controller = SerialController(data.objfunction)
    controller.strategy = \
        MoSyncStrategyNoConstraints(
            worker_id=0, data=data,
            maxeval=maxeval, nsamples=nsamples,
            exp_design=SymmetricLatinHypercube(dim=data.dim, npts=2*(data.dim+1)),
            response_surface=RBFInterpolant(kernel=CubicKernel, tail=LinearTail,
                                            maxp=maxeval),
            sampling_method=EvolutionaryAlgorithm(data,epsilons=epsilons, cand_flag=1), archiving_method=EpsilonArchive(size_max=200,epsilon=epsilons))

    # Launch the threads and give them access to the objective function
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    # Run the optimization strategy
    def merit(r):
        return r.value[0]

    result = controller.run(merit=merit)

    controller.strategy.save_plot(num)
コード例 #16
0
def main():
    "Testing routine."
    logging.basicConfig(format="%(name)-18s: %(levelname)-8s %(message)s",
                        level=logging.INFO)

    samples = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
    controller = ThreadController()
    strategy = FixedSampleStrategy(samples)
    strategy = CheckWorkerStrategy(controller, strategy)
    controller.strategy = strategy
    add_monitor(controller, 1)

    for _ in range(5):
        controller.launch_worker(BasicWorkerThread(controller, objective))

    result = controller.run()
    print(("Final: {0:.3e} @ {1}".format(result.value, result.params)))
コード例 #17
0
ファイル: test_kriging.py プロジェクト: yuhaibo2017/pySOT
def main():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/test_kriging.log"):
        os.remove("./logfiles/test_kriging.log")
    logging.basicConfig(filename="./logfiles/test_kriging.log",
                        level=logging.INFO)

    print("\nNumber of threads: 4")
    print("Maximum number of evaluations: 25")
    print("Sampling method: CandidateDYCORS, with weight 0.5")
    print("Experimental design: Symmetric Latin Hypercube")
    print("Surrogate: Cubic RBF, domain scaled to unit box")

    nthreads = 4
    maxeval = 25
    nsamples = nthreads

    data = Ackley(dim=2)
    print(data.info)

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = \
        SyncStrategyNoConstraints(
            worker_id=0, data=data,
            maxeval=maxeval, nsamples=nsamples,
            exp_design=SymmetricLatinHypercube(dim=data.dim, npts=2*(data.dim+1)),
            response_surface=KrigingInterpolant(maxp=maxeval),
            sampling_method=CandidateDYCORS(data=data, numcand=100*data.dim, weights=[0.5]))

    # Launch the threads and give them access to the objective function
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
コード例 #18
0
def test_lcb_async():
    max_evals = 50
    gp = GPRegressor(dim=ackley.dim)
    slhd = SymmetricLatinHypercube(
        dim=ackley.dim, num_pts=2*(ackley.dim+1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = LCBStrategy(
        max_evals=max_evals, opt_prob=ackley, exp_design=slhd,
        surrogate=gp, asynchronous=True, batch_size=None)

    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)
    controller.run()

    check_strategy(controller)
コード例 #19
0
def example_lower_confidence_bounds():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/example_lower_confidence_bounds.log"):
        os.remove("./logfiles/example_lower_confidence_bounds.log")
    logging.basicConfig(
        filename="./logfiles/example_lower_confidence_bounds.log",
        level=logging.INFO)

    num_threads = 4
    max_evals = 100

    hart6 = Hartman6()
    gp = GPRegressor(dim=hart6.dim)
    slhd = SymmetricLatinHypercube(dim=hart6.dim, num_pts=2 * (hart6.dim + 1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = LCBStrategy(max_evals=max_evals,
                                      opt_prob=hart6,
                                      exp_design=slhd,
                                      surrogate=gp,
                                      asynchronous=True)

    print("Number of threads: {}".format(num_threads))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(gp.__class__.__name__))

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, hart6.eval)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
コード例 #20
0
ファイル: test_simple.py プロジェクト: evayang234/pySOT
def main():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    logging.basicConfig(filename="./logfiles/test_simple.log",
                        level=logging.INFO)

    print("\nNumber of threads: 4")
    print("Maximum number of evaluations: 1000")
    print("Search strategy: CandidateDYCORS")
    print("Experimental design: Latin Hypercube")
    print("Ensemble surrogates: Cubic RBF")

    nthreads = 4
    maxeval = 1000
    nsamples = nthreads

    data = Ackley(dim=10)
    print(data.info)

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = \
        SyncStrategyNoConstraints(
            worker_id=0, data=data,
            maxeval=maxeval, nsamples=nsamples,
            exp_design=LatinHypercube(dim=data.dim, npts=2*(data.dim+1)),
            response_surface=RBFInterpolant(surftype=CubicRBFSurface, maxp=maxeval),
            search_procedure=CandidateDYCORS(data=data, numcand=100*data.dim))

    # Launch the threads and give them access to the objective function
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
コード例 #21
0
def test_example_simple():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/example_simple.log"):
        os.remove("./logfiles/example_simple.log")
    logging.basicConfig(filename="./logfiles/example_simple.log",
                        level=logging.INFO)

    num_threads = 2
    max_evals = 50

    ackley = Ackley(dim=10)
    rbf = RBFInterpolant(dim=ackley.dim,
                         lb=ackley.lb,
                         ub=ackley.ub,
                         kernel=CubicKernel(),
                         tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(dim=ackley.dim,
                                   num_pts=2 * (ackley.dim + 1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(max_evals=max_evals,
                                       opt_prob=ackley,
                                       exp_design=slhd,
                                       surrogate=rbf,
                                       asynchronous=True)

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print("Best value found: {0}".format(result.value))
    print("Best solution found: {0}\n".format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
コード例 #22
0
def run_gdx_calibrator(dim, nworkers, script, folder, inclCentre):
    n_start_pts = make_multiple_of_n(2 * dim + 1, nworkers)
    maxeval = n_start_pts + make_multiple_of_n(min(max(300, 100 * dim), 400),
                                               2 * nworkers)
    print("nparams   ", dim)
    print("nworkers  ", nworkers)
    print("script    ", script)
    print("folder    ", folder)
    print("inclCentr ", inclCentre)
    print(n_start_pts, "start point evaluations")
    print(maxeval, "total evaluations")
    worker = [None] * nworkers
    for i in range(0, nworkers):
        worker[i] = gdxworker(dim=dim,
                              worker_id=(i + 1),
                              script=script,
                              folder=folder)
    controller = ThreadController()
    if inclCentre == 1:
        exp_design = GdxSymmetricLatinHypercube(dim=dim, npts=n_start_pts)
    else:
        exp_design = SymmetricLatinHypercube(dim=dim, npts=n_start_pts)
    sampling_methods = [
        CandidateUniform(data=worker[0], numcand=min(100 * dim, 2000)),
        CandidateDYCORS(data=worker[0], numcand=min(100 * dim, 2000))
    ]
    strategy = SyncStrategyNoConstraints(
        worker_id=0,
        data=worker[0],
        maxeval=maxeval,
        nsamples=nworkers,
        exp_design=exp_design,
        response_surface=RBFInterpolant(kernel=CubicKernel,
                                        tail=LinearTail,
                                        maxp=min(maxeval, 2000)),
        sampling_method=MultiSampling(sampling_methods, cycle=[0, 1]))
    controller.strategy = strategy
    for i in range(0, nworkers):
        worker_thread = BasicWorkerThread(controller, worker[i].objfunction)
        controller.launch_worker(worker_thread)
    return controller.run()
コード例 #23
0
ファイル: pysotcube.py プロジェクト: microprediction/tuneup
def pysot_cube(objective, scale, n_trials, n_dim, with_count=False):

    if False:
        if not os.path.exists("./logfiles"):
            os.makedirs("logfiles")
        if os.path.exists("./logfiles/example_simple.log"):
            os.remove("./logfiles/example_simple.log")
        logging.basicConfig(filename="./logfiles/example_simple.log",
                            level=logging.INFO)

    num_threads = 2
    max_evals = n_trials
    gp = GenericProblem(dim=n_dim, objective=objective, scale=scale)
    rbf = RBFInterpolant(dim=n_dim,
                         lb=np.array([-scale] * n_dim),
                         ub=np.array([scale] * n_dim),
                         kernel=CubicKernel(),
                         tail=LinearTail(n_dim))
    slhd = SymmetricLatinHypercube(dim=n_dim, num_pts=2 * (n_dim + 1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(max_evals=max_evals,
                                       opt_prob=gp,
                                       exp_design=slhd,
                                       surrogate=rbf,
                                       asynchronous=True)

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, gp.eval)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()
    return (result.value, gp.feval_count) if with_count else result.value
コード例 #24
0
ファイル: test_ensemble.py プロジェクト: gitter-badger/pySOT
def main():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/test_ensemble.log"):
        os.remove("./logfiles/test_ensemble.log")
    logging.basicConfig(filename="./logfiles/test_ensemble.log",
                        level=logging.INFO)

    print("\nNumber of threads: 5")
    print("Maximum number of evaluations: 250")
    print("Sampling method: CandidateSRBF")
    print("Experimental design: Symmetric Latin Hypercube + point [1,1,...,1]")
    print("Ensemble Surrogate: Cubic RBF, PolyReg")

    nthreads = 5
    maxeval = 250
    nsamples = nthreads

    data = Ackley(dim=5)
    print(data.info)

    # Use RBF + PolyReg
    bounds = np.vstack((data.xlow, data.xup)).T
    basisp = basis_TD(data.dim, 2)  # use order 2 and no cross-terms

    models = [
        RBFInterpolant(kernel=CubicKernel, tail=LinearTail, maxp=maxeval),
        PolyRegression(bounds, basisp)
    ]
    response_surface = EnsembleSurrogate(model_list=models, maxp=maxeval)

    # Add an additional point to the experimental design. If a good
    # solution is already known you can add this point to the
    # experimental design
    extra = np.ones((1, data.dim))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = \
        SyncStrategyNoConstraints(
            worker_id=0, data=data,
            response_surface=response_surface,
            maxeval=maxeval, nsamples=nsamples,
            exp_design=SymmetricLatinHypercube(dim=data.dim, npts=2*(data.dim+1)),
            sampling_method=CandidateSRBF(data=data, numcand=100*data.dim),
            extra=extra)

    # Launch the threads and give them access to the objective function
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    response_surface.compute_weights()
    print('Final weights: {0}'.format(
        np.array_str(response_surface.weights, max_line_width=np.inf,
                     precision=5, suppress_small=True)))

    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0], max_line_width=np.inf,
                     precision=5, suppress_small=True)))
コード例 #25
0
    def run(self):
        """
        Run the optimization
        @return: Nothing
        """

        self.problem = VoltageOptimizationProblem(
            self.circuit,
            self.options,
            self.max_iter,
            callback=self.progress_signal.emit)

        # # (1) Optimization problem
        # # print(data.info)
        #
        # # (2) Experimental design
        # # Use a symmetric Latin hypercube with 2d + 1 samples
        # exp_des = SymmetricLatinHypercube(dim=self.problem.dim, npts=2 * self.problem.dim + 1)
        #
        # # (3) Surrogate model
        # # Use a cubic RBF interpolant with a linear tail
        # surrogate = RBFInterpolant(kernel=CubicKernel, tail=LinearTail, maxp=self.max_eval)
        #
        # # (4) Adaptive sampling
        # # Use DYCORS with 100d candidate points
        # adapt_samp = CandidateDYCORS(data=self, numcand=100 * self.dim)
        #
        # # Use the serial controller (uses only one thread)
        # controller = SerialController(self.objfunction)
        #
        # # (5) Use the sychronous strategy without non-bound constraints
        # strategy = SyncStrategyNoConstraints(worker_id=0,
        #                                      data=self,
        #                                      maxeval=self.max_eval,
        #                                      nsamples=1,
        #                                      exp_design=exp_des,
        #                                      response_surface=surrogate,
        #                                      sampling_method=adapt_samp)
        #
        # controller.strategy = strategy
        #
        # # Run the optimization strategy
        # result = controller.run()
        #
        # # Print the final result
        # print('Best value found: {0}'.format(result.value))
        # print('Best solution found: {0}'.format(np.array_str(result.params[0], max_line_width=np.inf, precision=5,
        #                                                      suppress_small=True)))

        num_threads = 4

        surrogate_model = GPRegressor(dim=self.problem.dim)
        sampler = SymmetricLatinHypercube(dim=self.problem.dim,
                                          num_pts=2 * (self.problem.dim + 1))

        # Create a strategy and a controller
        controller = ThreadController()
        controller.strategy = SRBFStrategy(max_evals=self.max_iter,
                                           opt_prob=self.problem,
                                           exp_design=sampler,
                                           surrogate=surrogate_model,
                                           asynchronous=True,
                                           batch_size=num_threads)

        print("Number of threads: {}".format(num_threads))
        print("Maximum number of evaluations: {}".format(self.max_iter))
        print("Strategy: {}".format(controller.strategy.__class__.__name__))
        print("Experimental design: {}".format(sampler.__class__.__name__))
        print("Surrogate: {}".format(surrogate_model.__class__.__name__))

        # Launch the threads and give them access to the objective function
        for _ in range(num_threads):
            worker = BasicWorkerThread(controller, self.problem.eval)
            controller.launch_worker(worker)

        # Run the optimization strategy
        result = controller.run()

        print('Best value found: {0}'.format(result.value))
        print('Best solution found: {0}\n'.format(
            np.array_str(result.params[0],
                         max_line_width=np.inf,
                         precision=4,
                         suppress_small=True)))

        self.solution = result.params[0]

        # Extract function values from the controller
        self.optimization_values = np.array(
            [o.value for o in controller.fevals])

        # send the finnish signal
        self.progress_signal.emit(0.0)
        self.progress_text.emit('Done!')
        self.done_signal.emit()
コード例 #26
0
    def pysot_cube(objective,
                   n_trials,
                   n_dim,
                   with_count=False,
                   method=None,
                   design=None):
        """ Minimize
        :param objective:
        :param n_trials:
        :param n_dim:
        :param with_count:
        :return:
        """
        logging.getLogger('pySOT').setLevel(logging.ERROR)

        num_threads = 1
        asynchronous = True

        max_evals = n_trials
        gp = GenericProblem(dim=n_dim, objective=objective)

        if design == 'latin':
            exp_design = LatinHypercube(dim=n_dim, num_pts=2 * (n_dim + 1))
        elif design == 'symmetric':
            exp_design = SymmetricLatinHypercube(dim=n_dim,
                                                 num_pts=2 * (n_dim + 1))
        elif design == 'factorial':
            exp_design = TwoFactorial(dim=n_dim)
        else:
            raise ValueError('design should be latin, symmetric or factorial')

        # Create a strategy and a controller
        #  SRBFStrategy, EIStrategy, DYCORSStrategy,RandomStrategy, LCBStrategy
        controller = ThreadController()
        if method.lower() == 'srbf':
            surrogate = RBFInterpolant(dim=n_dim,
                                       lb=np.array([0.0] * n_dim),
                                       ub=np.array([1.0] * n_dim),
                                       kernel=CubicKernel(),
                                       tail=LinearTail(n_dim))
            controller.strategy = SRBFStrategy(max_evals=max_evals,
                                               opt_prob=gp,
                                               exp_design=exp_design,
                                               surrogate=surrogate,
                                               asynchronous=asynchronous)
        elif method.lower() == 'ei':
            surrogate = GPRegressor(dim=n_dim,
                                    lb=np.array([0.0] * n_dim),
                                    ub=np.array([1.0] * n_dim))
            controller.strategy = EIStrategy(max_evals=max_evals,
                                             opt_prob=gp,
                                             exp_design=exp_design,
                                             surrogate=surrogate,
                                             asynchronous=asynchronous)
        elif method.lower() == 'dycors':
            surrogate = RBFInterpolant(dim=n_dim,
                                       lb=np.array([0.0] * n_dim),
                                       ub=np.array([1.0] * n_dim),
                                       kernel=CubicKernel(),
                                       tail=LinearTail(n_dim))
            controller.strategy = DYCORSStrategy(max_evals=max_evals,
                                                 opt_prob=gp,
                                                 exp_design=exp_design,
                                                 surrogate=surrogate,
                                                 asynchronous=asynchronous)
        elif method.lower() == 'lcb':
            surrogate = GPRegressor(dim=n_dim,
                                    lb=np.array([0.0] * n_dim),
                                    ub=np.array([1.0] * n_dim))
            controller.strategy = LCBStrategy(max_evals=max_evals,
                                              opt_prob=gp,
                                              exp_design=exp_design,
                                              surrogate=surrogate,
                                              asynchronous=asynchronous)
        elif method.lower() == 'random':
            controller.strategy = RandomStrategy(max_evals=max_evals,
                                                 opt_prob=gp)
        else:
            raise ValueError("Didn't recognize method passed to pysot")

        # Launch the threads and give them access to the objective function
        for _ in range(num_threads):
            worker = BasicWorkerThread(controller, gp.eval)
            controller.launch_worker(worker)

        # Run the optimization strategy
        result = controller.run()
        best_x = result.params[0].tolist()
        return (result.value, best_x,
                gp.feval_count) if with_count else (result.value, best_x)
コード例 #27
0
    def run(self):
        """
        Function that optimizes a MicroGrid Object
        Args:

        Returns:

        """
        self.iteration = 0
        self.raw_results_df = list()
        self.X = list()
        self.Y = list()

        self.progress_signal.emit(0)
        self.progress_text_signal.emit('Optimizing facility sizes by surrogate optimization: Objective: ' + str(self.optimization_type))

        # (1) Optimization problem
        # print(data.info)

        # (2) Experimental design
        # Use a symmetric Latin hypercube with 2d + 1 samples
        exp_des = SymmetricLatinHypercube(dim=self.dim, npts=2 * self.dim + 1)

        # (3) Surrogate model
        # Use a cubic RBF interpolant with a linear tail
        surrogate = RBFInterpolant(kernel=CubicKernel, tail=LinearTail, maxp=self.max_eval)

        # (4) Adaptive sampling
        # Use DYCORS with 100d candidate points
        adapt_samp = CandidateDYCORS(data=self, numcand=100 * self.dim)

        # Use the serial controller (uses only one thread)
        # controller = SerialController(self.objfunction)
        controller = ThreadController()

        # (5) Use the synchronous strategy without non-bound constraints
        strategy = SyncStrategyNoConstraints(
            worker_id=0, data=self, maxeval=self.max_eval, nsamples=1,
            exp_design=exp_des, response_surface=surrogate,
            sampling_method=adapt_samp)
        controller.strategy = strategy

        # Launch the threads and give them access to the objective function
        # for _ in range(multiprocessing.cpu_count()):
        #     worker = BasicWorkerThread(controller, self.objfunction)
        #     controller.launch_worker(worker)

        worker = BasicWorkerThread(controller, self.objfunction)
        controller.launch_worker(worker)

        # Run the optimization strategy
        result = controller.run()

        # Print the final result
        print('Best value found: {0}'.format(result.value))
        print('Best solution found: {0}'.format(
            np.array_str(result.params[0], max_line_width=np.inf,
                         precision=5, suppress_small=True)))
        self.solution = result.params[0]

        # Extract function values from the controller
        self.optimization_values = np.array([o.value for o in controller.fevals])

        # format the trials DataFrame
        data = np.array(self.raw_results_df)

        if self.battery is not None:
            cols = ['solar (kW)', 'wind (kW)', 'storage (kWh)']
        else:
            cols = ['solar (kW)', 'wind (kW)']
        self.raw_results_df = pd.DataFrame(data=data[:, 1:], columns=cols, index=data[:, 0])
        self.raw_results_df.sort_index(inplace=True)

        self.progress_text_signal.emit('Done!')
        self.done_signal.emit()
コード例 #28
0
def main():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/test_extra_vals.log"):
        os.remove("./logfiles/test_extra_vals.log")
    logging.basicConfig(filename="./logfiles/test_extra_vals.log",
                        level=logging.INFO)

    print("\nNumber of threads: 4")
    print("Maximum number of evaluations: 500")
    print("Sampling method: CandidateDYCORS")
    print("Experimental design: Symmetric Latin Hypercube")
    print("Surrogate: Cubic RBF")

    nthreads = 4
    maxeval = 500
    nsamples = nthreads

    data = Ackley(dim=10)
    print(data.info)

    nextra = 10
    extra = np.random.uniform(data.xlow, data.xup, (nextra, data.dim))
    extra_vals = np.nan * np.ones((nextra, 1))
    for i in range(nextra):  # Evaluate every second point
        if i % 2 == 0:
            extra_vals[i] = data.objfunction(extra[i, :])

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = \
        SyncStrategyNoConstraints(
            worker_id=0, data=data,
            maxeval=maxeval, nsamples=nsamples,
            exp_design=SymmetricLatinHypercube(dim=data.dim, npts=2*(data.dim+1)),
            response_surface=RBFInterpolant(kernel=CubicKernel, tail=LinearTail,
                                            maxp=maxeval),
            sampling_method=CandidateDYCORS(data=data, numcand=100*data.dim),
            extra=extra, extra_vals=extra_vals)

    # Append the known function values to the POAP database since POAP won't evaluate these points
    for i in range(len(extra_vals)):
        if not np.isnan(extra_vals[i]):
            record = EvalRecord(params=(np.ravel(extra[i, :]), ),
                                status='completed')
            record.value = extra_vals[i]
            record.feasible = True
            controller.fevals.append(record)

    # Launch the threads and give them access to the objective function
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
コード例 #29
0
    def objfunction(self, x):
        return benchmarks.f(x)


dim = benchmarks.common_dim
n_start_pts = 2 * dim + 1
maxeval = 2000 * dim
worker = Worker(dim=dim)
check_opt_prob(worker)
nthreads = 1  # set to higher number for parallel evaluation
nsamples = 40
strategy = SyncStrategyNoConstraints(
    worker_id=0,
    data=worker,
    maxeval=maxeval,
    nsamples=nsamples,
    exp_design=SymmetricLatinHypercube(dim=dim, npts=n_start_pts),
    response_surface=RBFInterpolant(kernel=CubicKernel,
                                    tail=LinearTail,
                                    maxp=min(maxeval, 50000)),
    sampling_method=CandidateDYCORS(data=worker, numcand=min(100 * dim, 5000)))
controller = ThreadController()
controller.strategy = strategy
for i in range(nthreads):
    worker_thread = BasicWorkerThread(controller, worker.objfunction)
    controller.launch_worker(worker_thread)
result = controller.run()
print("dim", benchmarks.common_dim, ", after", benchmarks.count,
      "evaluations f(x) =", f"{benchmarks.best_y:.3f}")
コード例 #30
0
ファイル: test_ensemble.py プロジェクト: evayang234/pySOT
def main():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    logging.basicConfig(filename="./logfiles/test_ensemble.log",
                        level=logging.INFO)

    print("\nNumber of threads: 4")
    print("Maximum number of evaluations: 50")
    print("Search strategy: CandidateSRBF")
    print("Experimental design: Latin Hypercube + point [0.1, 0.5, 0.8]")
    print("Surrogate: Cubic RBF, Linear RBF, Thin-plate RBF, MARS")

    nthreads = 4
    maxeval = 50
    nsamples = nthreads

    data = Hartman3()
    print(data.info)

    # Use 3 differents RBF's and MARS as an ensemble surrogate
    models = [
        RBFInterpolant(surftype=CubicRBFSurface, maxp=maxeval),
        RBFInterpolant(surftype=LinearRBFSurface, maxp=maxeval),
        RBFInterpolant(surftype=TPSSurface, maxp=maxeval)
    ]
    response_surface = EnsembleSurrogate(models, maxeval)

    # Add an additional point to the experimental design. If a good
    # solution is already known you can add this point to the
    # experimental design
    extra = np.atleast_2d([0.1, 0.5, 0.8])

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = \
        SyncStrategyNoConstraints(
            worker_id=0, data=data,
            response_surface=response_surface,
            maxeval=maxeval, nsamples=nsamples,
            exp_design=LatinHypercube(dim=data.dim, npts=2*(data.dim+1)),
            search_procedure=CandidateSRBF(data=data, numcand=100*data.dim),
            extra=extra)

    # Launch the threads and give them access to the objective function
    for _ in range(nthreads):
        worker = BasicWorkerThread(controller, data.objfunction)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    response_surface.compute_weights()
    print('Final weights: {0}'.format(
        np.array_str(response_surface.weights,
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))

    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))