def evaluate_once(): """Evaluates the model for one time.""" _, status, _ = utils.create_checkpoint(log_dir_path, model=classifier, ema_model=ema_classifier, global_step=global_step) status.expect_partial() logging.info('Last checkpoint [iteration: %d] restored at %s.', global_step.numpy(), log_dir_path) if global_step.numpy() >= FLAGS.max_iteration: nonlocal evaluated_last_ckpt evaluated_last_ckpt = True top_1_accuracy = tf.keras.metrics.CategoricalAccuracy() top_5_accuracy = tf.keras.metrics.TopKCategoricalAccuracy(k=5) for inputs in dataset: if FLAGS.input_features_dim > 0: features = inputs[common_module.KEY_FEATURES] else: features, _ = pipelines.create_model_input( inputs, common_module.MODEL_INPUT_KEYPOINT_TYPE_2D_INPUT, keypoint_profile_2d) features = tf.squeeze(features, axis=1) features = features[:, ::FLAGS.downsample_rate, :] labels = inputs[common_module.KEY_CLASS_TARGETS] labels = tf.squeeze(labels, axis=1) if FLAGS.use_moving_average: outputs = ema_classifier(features, training=False) else: outputs = classifier(features, training=False) top_1_accuracy.update_state(y_true=labels, y_pred=outputs) top_5_accuracy.update_state(y_true=labels, y_pred=outputs) nonlocal top_1_best_accuracy if (top_1_best_accuracy is None or top_1_accuracy.result().numpy() > top_1_best_accuracy): top_1_best_accuracy = top_1_accuracy.result().numpy() nonlocal top_5_best_accuracy if (top_5_best_accuracy is None or top_5_accuracy.result().numpy() > top_5_best_accuracy): top_5_best_accuracy = top_5_accuracy.result().numpy() tf.summary.scalar('eval/Basic/Top1_Accuracy', top_1_accuracy.result(), step=global_step.numpy()) tf.summary.scalar('eval/Best/Top1_Accuracy', top_1_best_accuracy, step=global_step.numpy()) tf.summary.scalar('eval/Basic/Top5_Accuracy', top_5_accuracy.result(), step=global_step.numpy()) tf.summary.scalar('eval/Best/Top5_Accuracy', top_5_best_accuracy, step=global_step.numpy()) logging.info('Accuracy: {:.2f}'.format( top_1_accuracy.result().numpy()))
def run(input_dataset_class, common_module, keypoint_profiles_module, input_example_parser_creator, keypoint_preprocessor_3d): """Runs training pipeline. Args: input_dataset_class: An input dataset class that matches input table type. common_module: A Python module that defines common flags and constants. keypoint_profiles_module: A Python module that defines keypoint profiles. input_example_parser_creator: A function handle for creating data parser function. If None, uses the default parser creator. keypoint_preprocessor_3d: A function handle for preprocessing raw 3D keypoints. """ _validate(common_module) log_dir_path = FLAGS.log_dir_path pipeline_utils.create_dir_and_save_flags(flags, log_dir_path, 'all_flags.train.json') # Setup summary writer. summary_writer = tf.summary.create_file_writer( os.path.join(log_dir_path, 'train_logs'), flush_millis=10000) # Setup configuration. keypoint_profile_2d = keypoint_profiles_module.create_keypoint_profile_or_die( FLAGS.keypoint_profile_name_2d) keypoint_profile_3d = keypoint_profiles_module.create_keypoint_profile_or_die( FLAGS.keypoint_profile_name_3d) model = algorithms.get_algorithm( algorithm_type=FLAGS.algorithm_type, pose_embedding_dim=FLAGS.pose_embedding_dim, view_embedding_dim=FLAGS.view_embedding_dim, fusion_op_type=FLAGS.fusion_op_type, view_loss_weight=FLAGS.view_loss_weight, regularization_loss_weight=FLAGS.regularization_loss_weight, disentangle_loss_weight=FLAGS.disentangle_loss_weight, embedder_type=FLAGS.embedder_type) optimizers = algorithms.get_optimizers( algorithm_type=FLAGS.algorithm_type, learning_rate=FLAGS.learning_rate) global_step = optimizers['encoder_optimizer'].iterations ckpt_manager, _, _ = utils.create_checkpoint( log_dir_path, **optimizers, model=model, global_step=global_step) # Setup the training dataset. dataset = pipelines.create_dataset_from_tables( [FLAGS.input_table], [FLAGS.batch_size], num_instances_per_record=2, shuffle=True, num_epochs=None, drop_remainder=True, keypoint_names_2d=keypoint_profile_2d.keypoint_names, keypoint_names_3d=keypoint_profile_3d.keypoint_names, shuffle_buffer_size=FLAGS.shuffle_buffer_size, dataset_class=input_dataset_class, input_example_parser_creator=input_example_parser_creator) def train_one_iteration(inputs): """Trains the model for one iteration. Args: inputs: A dictionary for training inputs. Returns: The training loss for this iteration. """ _, side_outputs = pipelines.create_model_input( inputs, FLAGS.model_input_keypoint_type, keypoint_profile_2d, keypoint_profile_3d) keypoints_2d = side_outputs[common_module.KEY_PREPROCESSED_KEYPOINTS_2D] keypoints_3d, _ = keypoint_preprocessor_3d( inputs[common_module.KEY_KEYPOINTS_3D], keypoint_profile_3d, normalize_keypoints_3d=True) keypoints_2d, keypoints_3d = data_utils.shuffle_batches( [keypoints_2d, keypoints_3d]) return model.train((keypoints_2d, keypoints_3d), **optimizers) if FLAGS.compile: train_one_iteration = tf.function(train_one_iteration) record_every_n_steps = min(100, FLAGS.num_iterations) save_ckpt_every_n_steps = min(10000, FLAGS.num_iterations) with summary_writer.as_default(): with tf.summary.record_if(global_step % record_every_n_steps == 0): start = time.time() for inputs in dataset: if global_step >= FLAGS.num_iterations: break model_losses = train_one_iteration(inputs) duration = time.time() - start start = time.time() for tag, losses in model_losses.items(): for name, loss in losses.items(): tf.summary.scalar( 'train/{}/{}'.format(tag, name), loss, step=global_step) for tag, optimizer in optimizers.items(): tf.summary.scalar( 'train/{}_learning_rate'.format(tag), optimizer.lr, step=global_step) tf.summary.scalar('train/batch_time', duration, step=global_step) tf.summary.scalar('global_step/sec', 1 / duration, step=global_step) if global_step % record_every_n_steps == 0: logging.info('Iter[{}/{}], {:.6f}s/iter, loss: {:.4f}'.format( global_step.numpy(), FLAGS.num_iterations, duration, model_losses['encoder']['total_loss'].numpy())) # Save checkpoint. if global_step % save_ckpt_every_n_steps == 0: ckpt_manager.save(checkpoint_number=global_step) logging.info('Checkpoint saved at step %d.', global_step.numpy())
def run(input_dataset_class, common_module, keypoint_profiles_module, input_example_parser_creator): """Runs training pipeline. Args: input_dataset_class: An input dataset class that matches input table type. common_module: A Python module that defines common flags and constants. keypoint_profiles_module: A Python module that defines keypoint profiles. input_example_parser_creator: A function handle for creating data parser function. If None, uses the default parser creator. """ log_dir_path = FLAGS.log_dir_path pipeline_utils.create_dir_and_save_flags( flags, log_dir_path, 'all_flags.train_with_features.json') # Setup summary writer. summary_writer = tf.summary.create_file_writer( os.path.join(log_dir_path, 'train_logs'), flush_millis=10000) # Setup configuration. keypoint_profile_2d = keypoint_profiles_module.create_keypoint_profile_or_die( FLAGS.keypoint_profile_name_2d) # Setup model. input_length = math.ceil(FLAGS.num_frames / FLAGS.downsample_rate) if FLAGS.input_features_dim > 0: feature_dim = FLAGS.input_features_dim input_shape = (input_length, feature_dim) else: feature_dim = None input_shape = (input_length, 13 * 2) classifier = models.get_temporal_classifier( FLAGS.classifier_type, input_shape=input_shape, num_classes=FLAGS.num_classes) ema_classifier = tf.keras.models.clone_model(classifier) optimizer = tf.keras.optimizers.Adam(learning_rate=FLAGS.learning_rate) optimizer = tfa_optimizers.MovingAverage(optimizer) global_step = optimizer.iterations ckpt_manager, _, _ = utils.create_checkpoint( log_dir_path, optimizer=optimizer, model=classifier, ema_model=ema_classifier, global_step=global_step) # Setup the training dataset. dataset = pipelines.create_dataset_from_tables( FLAGS.input_tables, [int(x) for x in FLAGS.batch_sizes], num_instances_per_record=1, shuffle=True, drop_remainder=True, num_epochs=None, keypoint_names_2d=keypoint_profile_2d.keypoint_names, feature_dim=feature_dim, num_classes=FLAGS.num_classes, num_frames=FLAGS.num_frames, shuffle_buffer_size=FLAGS.shuffle_buffer_size, common_module=common_module, dataset_class=input_dataset_class, input_example_parser_creator=input_example_parser_creator) loss_object = tf.keras.losses.CategoricalCrossentropy(from_logits=True) def train_one_iteration(inputs): """Trains the model for one iteration. Args: inputs: A dictionary for training inputs. Returns: loss: The training loss for this iteration. """ if FLAGS.input_features_dim > 0: features = inputs[common_module.KEY_FEATURES] else: features, _ = pipelines.create_model_input( inputs, common_module.MODEL_INPUT_KEYPOINT_TYPE_2D_INPUT, keypoint_profile_2d) features = tf.squeeze(features, axis=1) features = features[:, ::FLAGS.downsample_rate, :] labels = inputs[common_module.KEY_CLASS_TARGETS] labels = tf.squeeze(labels, axis=1) with tf.GradientTape() as tape: outputs = classifier(features, training=True) regularization_loss = sum(classifier.losses) crossentropy_loss = loss_object(labels, outputs) total_loss = crossentropy_loss + regularization_loss trainable_variables = classifier.trainable_variables grads = tape.gradient(total_loss, trainable_variables) optimizer.apply_gradients(zip(grads, trainable_variables)) for grad, trainable_variable in zip(grads, trainable_variables): tf.summary.scalar( 'summarize_grads/' + trainable_variable.name, tf.linalg.norm(grad), step=global_step) return dict( total_loss=total_loss, crossentropy_loss=crossentropy_loss, regularization_loss=regularization_loss) if FLAGS.compile: train_one_iteration = tf.function(train_one_iteration) record_every_n_steps = min(5, FLAGS.num_iterations) save_ckpt_every_n_steps = min(500, FLAGS.num_iterations) with summary_writer.as_default(): with tf.summary.record_if(global_step % record_every_n_steps == 0): start = time.time() for inputs in dataset: if global_step >= FLAGS.num_iterations: break model_losses = train_one_iteration(inputs) duration = time.time() - start start = time.time() for name, loss in model_losses.items(): tf.summary.scalar('train/' + name, loss, step=global_step) tf.summary.scalar('train/learning_rate', optimizer.lr, step=global_step) tf.summary.scalar('train/batch_time', duration, step=global_step) tf.summary.scalar('global_step/sec', 1 / duration, step=global_step) if global_step % record_every_n_steps == 0: logging.info('Iter[{}/{}], {:.6f}s/iter, loss: {:.4f}'.format( global_step.numpy(), FLAGS.num_iterations, duration, model_losses['total_loss'].numpy())) # Save checkpoint. if global_step % save_ckpt_every_n_steps == 0: utils.assign_moving_average_vars(classifier, ema_classifier, optimizer) ckpt_manager.save(checkpoint_number=global_step) logging.info('Checkpoint saved at step %d.', global_step.numpy())
def evaluate_once(): """Evaluates the model for one time.""" _, status, _ = utils.create_checkpoint(log_dir_path, model=classifier, ema_model=ema_classifier, global_step=global_step) status.expect_partial() logging.info('Last checkpoint [iteration: %d] restored at %s.', global_step.numpy(), log_dir_path) if global_step.numpy() >= FLAGS.max_iteration: nonlocal evaluated_last_ckpt evaluated_last_ckpt = True top_1_accuracy = tf.keras.metrics.CategoricalAccuracy() top_5_accuracy = tf.keras.metrics.TopKCategoricalAccuracy(k=5) for inputs in dataset: _, side_outputs = pipelines.create_model_input( inputs, common_module.MODEL_INPUT_KEYPOINT_TYPE_2D_INPUT, keypoint_profile_2d) keypoints_2d = side_outputs[ common_module.KEY_PREPROCESSED_KEYPOINTS_2D] keypoints_2d = tf.squeeze(keypoints_2d, axis=1) features = keypoints_2d[:, ::FLAGS.downsample_rate, Ellipsis] labels = inputs[common_module.KEY_CLASS_TARGETS] labels = tf.squeeze(labels, axis=1) batch_size, num_frames, num_joints, feature_dim = features.shape features = tf.reshape(features, (-1, num_joints, feature_dim)) _, features = encoder(features, training=False) features = features[FLAGS.encoder_output_activation] features = tf.reshape(features, (batch_size, num_frames, -1)) if (FLAGS.encoder_output_activation == 'embedder') and (FLAGS.encoder_algorithm_type != algorithms.TYPE_ALGORITHM_ALIGN): features, _ = tf.split(features, num_or_size_splits=[ FLAGS.encoder_pose_embedding_dim, FLAGS.encoder_view_embedding_dim ], axis=-1) if FLAGS.use_moving_average: outputs = ema_classifier(features, training=False) else: outputs = classifier(features, training=False) top_1_accuracy.update_state(y_true=labels, y_pred=outputs) top_5_accuracy.update_state(y_true=labels, y_pred=outputs) nonlocal top_1_best_accuracy if (top_1_best_accuracy is None or top_1_accuracy.result().numpy() > top_1_best_accuracy): top_1_best_accuracy = top_1_accuracy.result().numpy() nonlocal top_5_best_accuracy if (top_5_best_accuracy is None or top_5_accuracy.result().numpy() > top_5_best_accuracy): top_5_best_accuracy = top_5_accuracy.result().numpy() tf.summary.scalar('eval/Basic/Top1_Accuracy', top_1_accuracy.result(), step=global_step.numpy()) tf.summary.scalar('eval/Best/Top1_Accuracy', top_1_best_accuracy, step=global_step.numpy()) tf.summary.scalar('eval/Basic/Top5_Accuracy', top_5_accuracy.result(), step=global_step.numpy()) tf.summary.scalar('eval/Best/Top5_Accuracy', top_5_best_accuracy, step=global_step.numpy()) logging.info('Accuracy: {:.2f}'.format( top_1_accuracy.result().numpy()))