コード例 #1
0
def test_meta_provider():
    ds_tagged_data = []
    for subset in ["train", "val"]:
        for category_index in range(10):
            for img_index in range(100):

                new_object = MockTaggedData(
                    relative_path=
                    f"{subset}/cat{category_index}/{img_index}.png",
                    data=category_index)

                ds_tagged_data.append(new_object)

    template = "{{subset}}/{{label}}/*.png"
    add_label = LabelByTemplate(template=template)
    split_into_subset = SplitByTemplate(template=template)
    label_to_index = LabelToIndex()

    operations = [split_into_subset, add_label, label_to_index]
    ds = Dataset(operations=operations, output_function=classification_output)
    ds.form(ds_tagged_data)

    ds_mapping = ds.meta.index_to_label

    for label, value in ds.train:
        assert f"cat{value}" == ds_mapping[label]
コード例 #2
0
def test_selective_operation():
    ds_tagged_data = []
    for subset in ["train", "val"]:
        for category_index in range(10):
            for img_index in range(100):

                new_object = MockTaggedData(
                    relative_path=f"{subset}/cat{category_index}/{img_index}.png", data=category_index
                )

                ds_tagged_data.append(new_object)

    template = "{{subset}}/{{label}}/*.png"
    add_label = LabelByTemplate(template=template)
    split_into_subset = SplitByTemplate(template=template)

    limit_train = LimitSamplesByBin(sample_limit=50, bin_creator=lambda x: x.label)
    limit_val = LimitSamplesByBin(sample_limit=10, bin_creator=lambda x: x.label)

    limit_both = SelectiveSubsetOperation({"train": limit_train, "val": limit_val})

    operations = [split_into_subset, add_label, limit_both]
    ds = Dataset(operations=operations, output_function=classification_output)
    ds.form(ds_tagged_data)

    assert len(ds.train) == 50 * 10
    assert len(ds.val) == 10 * 10
コード例 #3
0
def test_splitting(mask_dataset):
    operation_list = [SplitByTemplate("{{ subset }}/*")]

    ds = Dataset(operations=operation_list)
    ds.form(mask_dataset)

    assert len(ds.train) + len(ds.test) + len(ds.val) == len(ds)
    assert len(ds) == len(mask_dataset)
コード例 #4
0
def test_dropping(mask_dataset):
    operation_list = [DropByTemplate("*/mask*.jpg")]

    ds = Dataset(operations=operation_list)
    ds.form(mask_dataset)

    assert len(ds) * 2 == len(mask_dataset)

    for ds_object in ds.objects:
        assert "mask" not in ds_object.relative_path
コード例 #5
0
def test_different_input():
    ds_tagged_data = [MockTaggedData(f"{i}.png", i) for i in range(10)]
    ds = Dataset(output_function=triple_output)

    ds.form(ds_tagged_data)

    possible_values = {i * 3 for i in range(10)}
    for ds_object in ds:
        assert ds_object in possible_values
        possible_values.remove(ds_object)
コード例 #6
0
def test_splitting_and_combining(mask_dataset):
    mask_template = MaskTemplate(image="{{subset}}/image_{{img_id}}.jpg", mask="{{subset}}/mask_{{img_id}}.jpg")
    operation_list = [
        SplitByTemplate("{{ subset }}/*"),
        MaskByTemplate(mask_template),
    ]

    ds1 = Dataset(operations=operation_list)
    ds1.form(mask_dataset)

    assert (len(ds1.train) + len(ds1.test) + len(ds1.val)) * 2 == len(ds1)
コード例 #7
0
def test_coco(detection_collection):
    images, label_mapping = detection_collection
    coco_dict = detection_collection_to_coco_dict(images, label_mapping)
    annotation_file = MockTaggedData(relative_path="train.json",
                                     data=coco_dict)

    tagged_data = [annotation_file
                   ] + [detection_input for detection_input in images]
    coco_transform = SingleCoco(annotation_file="train.json", data_folder="")

    ds = Dataset(operations=[coco_transform])
    ds.form(tagged_data)

    assert len(ds) == len(images)
コード例 #8
0
ファイル: test_adding.py プロジェクト: GiteZz/poif
def test_adding():
    ds_tagged_data = []
    for subset in ["train", "val"]:
        for img_index in range(100):

            new_object = MockTaggedData(
                relative_path=f"{subset}/{img_index}.png",
                data=f"{subset}/{img_index}.png")

            ds_tagged_data.append(new_object)

    template = "{{subset}}/*.png"
    split_into_subset = SplitByTemplate(template=template)

    operations = [split_into_subset]
    ds = Dataset(operations=operations, output_function=classification_output)
    ds.form(ds_tagged_data)

    assert len(ds) == len(ds.train + ds.val)

    assert set(ds.objects) == set((ds.train + ds.val).objects)
コード例 #9
0
def test_combining_mask_img(mask_dataset):
    mask_template = MaskTemplate(image="{{subset}}/image_{{img_id}}.jpg", mask="{{subset}}/mask_{{img_id}}.jpg")
    operation_list = [MaskByTemplate(mask_template)]

    ds = Dataset(operations=operation_list, output_function=single_mask_output)
    ds.form(mask_dataset)

    assert len(ds.objects) == len(mask_dataset) // 2

    for ds_object in ds.objects:
        img, mask = ds_object.output()
        assert isinstance(img, np.ndarray)
        assert isinstance(mask, np.ndarray)

        img_path = ds_object.relative_path
        mask_path = ds_object.annotations[0].relative_path

        assert "image" in img_path
        assert "mask" in mask_path

        img_data = img_path.replace("image", "")
        mask_data = mask_path.replace("mask", "")

        assert img_data == mask_data