コード例 #1
0
ファイル: tf_util.py プロジェクト: Usertlcc/cc
def pointSIFT_KNN(radius, xyz):
    idx = pointSIFT_select_four(xyz, radius)
    grouped_xyz = group_point(xyz, idx)  # (batch_size, npoint, 32, 3)
    xyz_central = tf.tile(tf.expand_dims(xyz, 2),
                          [1, 1, 32, 1])  # translation normalization
    a = grouped_xyz - xyz_central
    new_points = tf.concat([xyz_central, a], axis=-1)

    return new_points, idx
コード例 #2
0
def pointSIFT_group_four(radius, xyz, points, use_xyz=True):
    idx = pointSIFT_select_four(xyz, radius)
    grouped_xyz = group_point(xyz, idx)  # (batch_size, npoint, 32, 3)
    grouped_xyz -= tf.tile(tf.expand_dims(xyz, 2), [1, 1, 32, 1])  # translation normalization
    if points is not None:
        grouped_points = group_point(points, idx)  # (batch_size, npoint, 8/32, channel)
        if use_xyz:
            new_points = tf.concat([grouped_xyz, grouped_points], axis=-1)  # (batch_size, npoint, 8/32, 3+channel)
        else:
            new_points = grouped_points
    else:
        new_points = grouped_xyz

    return xyz, new_points, idx, grouped_xyz
コード例 #3
0
def get_model(point_input, is_training, pfs_flag=False, bn_decay=None):
    """ Classification PointNet, input is BxNxC, output Bx40 """
    batch_size = point_input.get_shape()[0].value
    num_point1 = point_input.get_shape()[1].value
    num_point2 = int(np.floor(num_point1 / 4.0))
    num_point3 = int(np.floor(num_point2 / 4.0))

    num_features = point_input.get_shape()[2].value

    end_points = {}

    point_cloud1 = point_input

    k = 32
    nn_idx = pointSIFT_select_four(point_cloud1, 0.2)
    net1_1 = tf_util.attention_conv(point_cloud1,
                                    point_input,
                                    64,
                                    nn_idx,
                                    k,
                                    scope='conv_1_1',
                                    bn=True,
                                    bn_decay=bn_decay,
                                    is_training=is_training)
    net1_2 = tf_util.attention_conv(point_cloud1,
                                    net1_1,
                                    64,
                                    nn_idx,
                                    k,
                                    scope='conv_1_2',
                                    bn=True,
                                    bn_decay=bn_decay,
                                    is_training=is_training)

    k = 30
    net, p1_idx, pn_idx, point_cloud2 = tf_util.attention_pooling(
        net1_2,
        point_cloud1,
        num_point2,
        k,
        scope='12',
        bn_decay=bn_decay,
        is_training=is_training)

    net1_1 = tf.squeeze(
        tf.reduce_max(group_point(net1_1, pn_idx), axis=-2, keepdims=True))
    net1_2 = net

    k = 16
    nn_idx = pointSIFT_select_two(point_cloud2, 0.4)
    net2_1 = tf_util.attention_conv(point_cloud2,
                                    net,
                                    128,
                                    nn_idx,
                                    k,
                                    scope='conv_2_1',
                                    bn=True,
                                    bn_decay=bn_decay,
                                    is_training=is_training)
    net2_2 = tf_util.attention_conv(point_cloud2,
                                    net2_1,
                                    128,
                                    nn_idx,
                                    k,
                                    scope='conv_2_2',
                                    bn=True,
                                    bn_decay=bn_decay,
                                    is_training=is_training)

    k = 30
    net, p2_idx, pn_idx, point_cloud3 = tf_util.attention_pooling(
        net2_2,
        point_cloud2,
        num_point3,
        k,
        scope='13',
        bn_decay=bn_decay,
        is_training=is_training)
    print(6666, net1_1.shape)
    net1_1 = tf.reduce_max(group_point(net1_1, pn_idx), axis=-2, keepdims=True)
    net1_2 = tf.reduce_max(group_point(net1_2, pn_idx), axis=-2, keepdims=True)
    net2_1 = tf.reduce_max(group_point(net2_1, pn_idx), axis=-2, keepdims=True)
    net2_2 = net

    k = 16
    nn_idx = pointSIFT_select_two(point_cloud3, 0.6)
    net3_1 = tf_util.attention_conv(point_cloud3,
                                    net,
                                    256,
                                    nn_idx,
                                    k,
                                    scope='conv_3_1',
                                    bn=True,
                                    bn_decay=bn_decay,
                                    is_training=is_training)
    net3_2 = tf_util.attention_conv(point_cloud3,
                                    net3_1,
                                    256,
                                    nn_idx,
                                    k,
                                    scope='conv_3_2',
                                    bn=True,
                                    bn_decay=bn_decay,
                                    is_training=is_training)

    net3_1 = tf.expand_dims(net3_1, axis=-2)
    net3_2 = tf.expand_dims(net3_2, axis=-2)
    net2_2 = tf.expand_dims(net2_2, axis=-2)

    net = tf.concat([net1_1, net1_2, net2_1, net2_2, net3_1, net3_2], axis=-1)
    net = tf_util.conv2d(net,
                         1024, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         activation_fn=tf.nn.relu,
                         bn=True,
                         is_training=is_training,
                         scope='agg',
                         bn_decay=bn_decay)

    net = tf.reduce_max(net, axis=1, keepdims=True)

    net = tf.reshape(net, [batch_size, -1])

    end_points['embedding'] = net

    net = tf_util.fully_connected(net,
                                  512,
                                  bn=True,
                                  is_training=is_training,
                                  scope='fc1',
                                  bn_decay=bn_decay)
    net = tf_util.dropout(net,
                          keep_prob=0.5,
                          is_training=is_training,
                          scope='dropout1')
    net = tf_util.fully_connected(net,
                                  256,
                                  bn=True,
                                  is_training=is_training,
                                  scope='fc2',
                                  bn_decay=bn_decay)
    net = tf_util.dropout(net,
                          keep_prob=0.5,
                          is_training=is_training,
                          scope='dropout2')
    net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3')

    return net, end_points