last_epoch=start_epoch) bnm_scheduler = pt_utils.BNMomentumScheduler(model, bnm_lmbd, last_epoch=start_epoch) model_fn = model_fn_decorator(nn.CrossEntropyLoss()) # viz = pt_utils.VisdomViz(port=args.visdom_port) # viz.text(str(vars(args))) trainer = pt_utils.Trainer( model, model_fn, optimizer, checkpoint_name= "/kitti_semantic/Pointnet2_PyTorch-master/pointnet2/train/checkpoints/pointnet2_smeseg", best_name= "/kitti_semantic/Pointnet2_PyTorch-master/pointnet2/train/checkpoints/poitnet2_semseg_best", lr_scheduler=lr_scheduler, bnm_scheduler=bnm_scheduler # viz=viz ) trainer.train(0, start_epoch, args.epochs, train_loader, test_loader, best_loss=best_loss) if start_epoch == args.epochs: _ = trainer.eval_epoch(test_loader)
optimizer, lr_lbmd, last_epoch=start_epoch ) bnm_scheduler = pt_utils.BNMomentumScheduler( model, bnm_lmbd, last_epoch=start_epoch ) model_fn = model_fn_decorator(nn.CrossEntropyLoss()) viz = pt_utils.VisdomViz(port=args.visdom_port) viz.text(str(vars(args))) trainer = pt_utils.Trainer( model, model_fn, optimizer, checkpoint_name="checkpoints/pointnet2_smeseg", best_name="checkpoints/poitnet2_semseg_best", lr_scheduler=lr_scheduler, bnm_scheduler=bnm_scheduler, viz=viz ) trainer.train( 0, start_epoch, args.epochs, train_loader, test_loader, best_loss=best_loss ) if start_epoch == args.epochs: