def __init__(self): #rospy.init_node('tl_detector') rospy.init_node('tl_detector', log_level=rospy.DEBUG) self.pose = None self.waypoints = None self.camera_image = None self.lights = [] self.waypoints_organizer = None self.stop_line_organizer = None # Loading the stopline positions and camera image size parameters from config file config_string = rospy.get_param("/traffic_light_config") self.config = yaml.load(config_string) self.stop_line_positions = self.config['stop_line_positions'] self.stop_line_organizer = PointsOrganizer( [[stop_line[0], stop_line[1]] for stop_line in self.stop_line_positions]) self.has_image = False self.camera_image = None self.image_counter = 0 self.image_classifier_is_ready = False sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) ''' /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and helps you acquire an accurate ground truth data source for the traffic light classifier by sending the current color state of all traffic lights in the simulator. When testing on the vehicle, the color state will not be available. You'll need to rely on the position of the light and the camera image to predict it. ''' sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb) sub6 = rospy.Subscriber('/image_color', Image, self.image_cb, queue_size=1, buff_size=100 * 1024 * 1024, tcp_nodelay=True) self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1) self.bridge = CvBridge() self.light_classifier = TLClassifier() #self.listener = tf.TransformListener() self.image_classifier_is_ready = True self.state = TrafficLight.UNKNOWN self.last_state = TrafficLight.UNKNOWN self.last_wp = -1 self.state_count = 0 rospy.spin()
def waypoints_cb(self, waypoints): self.waypoints = waypoints self.waypoints_organizer = PointsOrganizer( [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints])
class TLDetector(object): def __init__(self): #rospy.init_node('tl_detector') rospy.init_node('tl_detector', log_level=rospy.DEBUG) self.pose = None self.waypoints = None self.camera_image = None self.lights = [] self.waypoints_organizer = None self.stop_line_organizer = None # Loading the stopline positions and camera image size parameters from config file config_string = rospy.get_param("/traffic_light_config") self.config = yaml.load(config_string) self.stop_line_positions = self.config['stop_line_positions'] self.stop_line_organizer = PointsOrganizer( [[stop_line[0], stop_line[1]] for stop_line in self.stop_line_positions]) self.has_image = False self.camera_image = None self.image_counter = 0 self.image_classifier_is_ready = False sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) ''' /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and helps you acquire an accurate ground truth data source for the traffic light classifier by sending the current color state of all traffic lights in the simulator. When testing on the vehicle, the color state will not be available. You'll need to rely on the position of the light and the camera image to predict it. ''' sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb) sub6 = rospy.Subscriber('/image_color', Image, self.image_cb, queue_size=1, buff_size=100 * 1024 * 1024, tcp_nodelay=True) self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1) self.bridge = CvBridge() self.light_classifier = TLClassifier() #self.listener = tf.TransformListener() self.image_classifier_is_ready = True self.state = TrafficLight.UNKNOWN self.last_state = TrafficLight.UNKNOWN self.last_wp = -1 self.state_count = 0 rospy.spin() def pose_cb(self, msg): self.pose = msg def waypoints_cb(self, waypoints): self.waypoints = waypoints self.waypoints_organizer = PointsOrganizer( [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints]) def traffic_cb(self, msg): self.lights = msg.lights def image_cb(self, msg): """Identifies red lights in the incoming camera image and publishes the index of the waypoint closest to the red light's stop line to /traffic_waypoint Args: msg (Image): image from car-mounted camera """ self.has_image = True self.camera_image = msg light_wp, state = self.process_traffic_lights() rospy.logdebug('Image processed, light_wp: {}, state: {}.'.format( light_wp, state)) ''' Publish upcoming red lights at camera frequency. Each predicted state has to occur `STATE_COUNT_THRESHOLD` number of times till we start using it. Otherwise the previous stable state is used. ''' if self.last_state == TrafficLight.YELLOW and state == TrafficLight.GREEN: self.upcoming_red_light_pub.publish(Int32(light_up)) return if self.state != state: self.state_count = 0 self.state = state elif self.state_count >= STATE_COUNT_THRESHOLD: rospy.logdebug('State recorded, previous: {}, new: {}.'.format( self.last_state, self.state)) self.last_state = self.state #light_wp = light_wp if state == TrafficLight.RED else -1 light_wp = light_wp if state != TrafficLight.GREEN else -1 self.last_wp = light_wp self.upcoming_red_light_pub.publish(Int32(light_wp)) else: self.upcoming_red_light_pub.publish(Int32(self.last_wp)) self.state_count += 1 #def get_closest_waypoint(self, pose): def get_closest_waypoint(self, x, y): """Identifies the closest path waypoint to the given position https://en.wikipedia.org/wiki/Closest_pair_of_points_problem Args: pose (Pose): position to match a waypoint to Returns: int: index of the closest waypoint in self.waypoints """ #TODO implement closest_idx = self.waypoint_tree.query([x, y], 1)[1] return closest_idx def get_light_state(self, light): """Determines the current color of the traffic light Args: light (TrafficLight): light to classify Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ '''if(not self.has_image): self.prev_light_loc = None return False ''' if not self.image_classifier_is_ready or not self.has_image: return TrafficLight.UNKNOWN cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8") #Get classification return self.light_classifier.get_classification(cv_image) def process_traffic_lights(self): """Finds closest visible traffic light, if one exists, and determines its location and color Returns: int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists) int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ light = None # List of positions that correspond to the line to stop in front of for a given intersection #stop_line_positions = self.config['stop_line_positions'] if self.pose and self.waypoints_organizer and self.stop_line_organizer and self.lights: closest_waypoint_idx = self.waypoints_organizer.get_closest_point_idx( self.pose.pose.position.x, self.pose.pose.position.y, look_mode='AHEAD') closest_waypoint = self.waypoints.waypoints[closest_waypoint_idx] #car_position = self.get_closest_waypoint(self.pose.pose) #car_wp_idx = self.get_closest_waypoint(self.pose.pose.position.x, self.pose.pose.position.y) # Getting the closest stop line index ahead of vehicle closest_stop_line_idx = self.stop_line_organizer.get_closest_point_idx( closest_waypoint.pose.pose.position.x, closest_waypoint.pose.pose.position.y, look_mode='AHEAD') if closest_stop_line_idx is not None: closest_light = self.lights[closest_stop_line_idx] dist_to_light = math.sqrt( (self.pose.pose.position.x - closest_light.pose.pose.position.x)**2 + (self.pose.pose.position.y - closest_light.pose.pose.position.y)**2) # classify and Publishing traffic light only if it is within MAX_DETECTION_DIST if dist_to_light > MAX_DETECTION_DIST: return -1, TrafficLight.UNKNOWN # Getting stop line associated to upcoming traffic light closest_stop_line = self.stop_line_positions[ closest_stop_line_idx] # Getting waypoints closest to stopline stop_waypoints_idx = self.waypoints_organizer.get_closest_point_idx( closest_stop_line[0], closest_stop_line[1], look_mode='AHEAD') state = self.get_light_state(closest_light) return stop_waypoints_idx, state ''' #TODO find the closest visible traffic light (if one exists) diff = len(self.waypoints.waypoints) for i, light in ennumerate(self.lights): # Get stop line waypoint index line = stop_line_positions[i] temp_wp_idx = self.get_closest_waypoint(line[0],line[1]) # Find closest stop line waypoint index d = temp_wp_idx - car_wp_idx if d>=0 and d < diff: diff = d closest_light = light line_wp_idx = temp_wp_idx ''' ''' if closest_light: state = self.get_light_state(closest_light) return line_wp_idx, state self.waypoints = None ''' return -1, TrafficLight.UNKNOWN
class TLDetector(object): def __init__(self): rospy.init_node('tl_detector', log_level=rospy.DEBUG) self.pose = None self.waypoints = None self.waypoints_organizer = None self.camera_image = None self.lights = [] self.stop_line_organizer = None config_string = rospy.get_param("/traffic_light_config") self.config = yaml.load(config_string) self.state = TrafficLight.UNKNOWN self.last_state = TrafficLight.UNKNOWN self.last_wp = -1 self.state_count = 0 self.stop_line_positions = self.config['stop_line_positions'] self.stop_line_organizer = PointsOrganizer( [[stop_line[0], stop_line[1]] for stop_line in self.stop_line_positions]) self.has_image = False self.camera_image = None self.image_counter = 0 self.image_classifier_is_ready = False self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1) sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) ''' /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and helps you acquire an accurate ground truth data source for the traffic light classifier by sending the current color state of all traffic lights in the simulator. When testing on the vehicle, the color state will not be available. You'll need to rely on the position of the light and the camera image to predict it. ''' sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb) sub6 = rospy.Subscriber('/image_color', Image, self.image_cb, queue_size=1, buff_size=100 * 1024 * 1024, tcp_nodelay=True) self.bridge = CvBridge() self.light_classifier = TLClassifier() #self.listener = tf.TransformListener() self.image_classifier_is_ready = True rospy.spin() def pose_cb(self, msg): self.pose = msg def waypoints_cb(self, waypoints): self.waypoints = waypoints self.waypoints_organizer = PointsOrganizer( [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints]) def traffic_cb(self, msg): self.lights = msg.lights def image_cb(self, msg): """Identifies red lights in the incoming camera image and publishes the index of the waypoint closest to the red light's stop line to /traffic_waypoint Args: msg (Image): image from car-mounted camera """ self.has_image = True self.camera_image = msg light_wp, state = self.process_traffic_lights() rospy.logdebug('Image processed, light_wp: {}, state: {}.'.format( light_wp, state)) self.publish_upcoming_red_light(light_wp, state) def publish_upcoming_red_light(self, light_wp, state): ''' Publish upcoming red lights at camera frequency. Each predicted state has to occur `STATE_COUNT_THRESHOLD` number of times till we start using it. Otherwise the previous stable state is used. ''' if self.last_state == TrafficLight.YELLOW and state == TrafficLight.GREEN: self.upcoming_red_light_pub.publish(Int32(light_wp)) return if self.state != state: self.state_count = 0 self.state = state elif self.state_count >= STATE_COUNT_THRESHOLD: rospy.logdebug('State recorded, previous: {}, new: {}.'.format( self.last_state, self.state)) self.last_state = self.state light_wp = light_wp if state != TrafficLight.GREEN else -1 self.last_wp = light_wp self.upcoming_red_light_pub.publish(Int32(light_wp)) else: self.upcoming_red_light_pub.publish(Int32(self.last_wp)) self.state_count += 1 def get_light_state(self, light): """Determines the current color of the traffic light Args: light (TrafficLight): light to classify Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ if not self.image_classifier_is_ready or not self.has_image: return TrafficLight.UNKNOWN cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8") # Hack for fixing the red light issue - If classifier is not working, use the message received from traffic light topic # global i # cv2.imwrite('../../../full-image/Scratch/Image_'+str(light.state)+'/'+str(i)+'.jpg',cv_image) # i=i+1 # return light.state # Getting classification light_state_ = self.light_classifier.get_classification(cv_image) cv2.imwrite('light_classification/test_image.jpg', cv_image) return light_state_ def process_traffic_lights(self): """Finds closest visible traffic light, if one exists, and determines its location and color Returns: int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists) int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ if self.pose and self.waypoints_organizer and self.stop_line_organizer and self.lights: closest_waypoint_idx = self.waypoints_organizer.get_closest_point_idx( self.pose.pose.position.x, self.pose.pose.position.y, look_mode='AHEAD') closest_waypoint = self.waypoints.waypoints[closest_waypoint_idx] # Getting the closest stop line ahead of the vehicle closest_stop_line_idx = self.stop_line_organizer.get_closest_point_idx( closest_waypoint.pose.pose.position.x, closest_waypoint.pose.pose.position.y, look_mode='AHEAD') if closest_stop_line_idx is not None: closest_light = self.lights[closest_stop_line_idx] dist_to_light = math.sqrt( (self.pose.pose.position.x - closest_light.pose.pose.position.x)**2 + (self.pose.pose.position.y - closest_light.pose.pose.position.y)**2) # If the closest traffic light ahead is not within the maximum distance, #skips classifying and publishing it if dist_to_light > MAX_DETECTION_DIST: return -1, TrafficLight.UNKNOWN # Getting the stop line associated with the closest light closest_stop_line = self.stop_line_positions[ closest_stop_line_idx] # Getting the waypoint closest to stop line stop_waypoint_idx = self.waypoints_organizer.get_closest_point_idx( closest_stop_line[0], closest_stop_line[1], look_mode='AHEAD') state = self.get_light_state(closest_light) return stop_waypoint_idx, state return -1, TrafficLight.UNKNOWN
def traffic_cb(self, msg): self.lights = msg.lights self.stop_line_organizer = PointsOrganizer( [[light.pose.pose.position.x, light.pose.pose.position.y] for light in self.lights])
class TLDetector(object): def __init__(self): rospy.init_node('tl_detector') self.pose = None self.waypoints = None self.waypoints_organizer = None self.camera_image = None self.lights = [] self.stop_line_organizer = None sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) ''' /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and helps you acquire an accurate ground truth data source for the traffic light classifier by sending the current color state of all traffic lights in the simulator. When testing on the vehicle, the color state will not be available. You'll need to rely on the position of the light and the camera image to predict it. ''' sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb) sub6 = rospy.Subscriber('/image_color', Image, self.image_cb, queue_size=1, buff_size=2 * 52428800) config_string = rospy.get_param("/traffic_light_config") self.config = yaml.load(config_string) self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1) self.bridge = CvBridge() self.light_classifier = TLClassifier() self.listener = tf.TransformListener() self.state = TrafficLight.UNKNOWN self.last_state = TrafficLight.UNKNOWN self.last_wp = -1 self.state_count = 0 self.stop_line_positions = self.config['stop_line_positions'] self.image_counter = 0 rospy.spin() def pose_cb(self, msg): self.pose = msg def waypoints_cb(self, waypoints): self.waypoints = waypoints self.waypoints_organizer = PointsOrganizer( [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints]) def traffic_cb(self, msg): self.lights = msg.lights self.stop_line_organizer = PointsOrganizer( [[light.pose.pose.position.x, light.pose.pose.position.y] for light in self.lights]) def image_cb(self, msg): self.image_counter += 1 if IMAGE_CLASSIFICATION_CYCLE > 1 and self.image_counter % IMAGE_CLASSIFICATION_CYCLE != 1: return """Identifies red lights in the incoming camera image and publishes the index of the waypoint closest to the red light's stop line to /traffic_waypoint Args: msg (Image): image from car-mounted camera """ self.has_image = True self.camera_image = msg light_wp, state = self.process_traffic_lights() ''' Publish upcoming red lights at camera frequency. Each predicted state has to occur `STATE_COUNT_THRESHOLD` number of times till we start using it. Otherwise the previous stable state is used. ''' if self.state != state: self.state_count = 0 self.state = state elif self.state_count >= STATE_COUNT_THRESHOLD: self.last_state = self.state light_wp = light_wp if state == TrafficLight.RED else -1 self.last_wp = light_wp self.upcoming_red_light_pub.publish(Int32(light_wp)) else: self.upcoming_red_light_pub.publish(Int32(self.last_wp)) self.state_count += 1 def get_light_state(self, light): """Determines the current color of the traffic light Args: light (TrafficLight): light to classify Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ # For testing just return light state return light.state """ if(not self.has_image): self.prev_light_loc = None return False cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8") #Get classification return self.light_classifier.get_classification(cv_image) """ def process_traffic_lights(self): """Finds closest visible traffic light, if one exists, and determines its location and color Returns: int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists) int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ if self.pose and self.waypoints_organizer and self.stop_line_organizer: closest_waypoint_idx = self.waypoints_organizer.get_closest_point_idx( self.pose.pose.position.x, self.pose.pose.position.y, look_mode='AHEAD') closest_waypoint = self.waypoints.waypoints[closest_waypoint_idx] # Getting the closest light ahead of the vehicle closest_light_idx = self.stop_line_organizer.get_closest_point_idx( closest_waypoint.pose.pose.position.x, closest_waypoint.pose.pose.position.y, look_mode='AHEAD') if closest_light_idx is not None: closest_light = self.lights[closest_light_idx] # Getting the stop line associated with the closest light closest_stop_line = self.stop_line_positions[closest_light_idx] # Getting the waypoint closest to stop line stop_waypoint_idx = self.waypoints_organizer.get_closest_point_idx( closest_stop_line[0], closest_stop_line[1], look_mode='AHEAD') state = self.get_light_state(closest_light) return stop_waypoint_idx, state return -1, TrafficLight.UNKNOWN