import numpy as np import math from math import pi import imageio as im import matplotlib.pyplot as plt from PIL import Image from datetime import datetime degrees = 180 / pi # octahedron octahedronFaces = [[0, 90], [-90, 0], [0, 0], [90, 0], [180, 0], [0, -90]] # octahedronFaces = [[0, 2, 1], [0, 3, 2], [5, 1, 2], [5, 2, 3], [0, 1, 4], [0, 4, 3], [5, 4, 1], [5, 3, 4]] octahedronParent = [-1, 0, 0, 1, 0, 1, 4, 5] f1 = polFace([ polVertex(octahedronFaces[0]), polVertex(octahedronFaces[1]), polVertex(octahedronFaces[2]) ], "OCTA", "A") f2 = polFace([ polVertex(octahedronFaces[0]), polVertex(octahedronFaces[3]), polVertex(octahedronFaces[2]) ], "OCTA", "B") f3 = polFace([ polVertex(octahedronFaces[5]), polVertex(octahedronFaces[1]), polVertex(octahedronFaces[2]) ], "OCTA", "C") f4 = polFace([ polVertex(octahedronFaces[5]),
# f15 = polFace([polVertex(polIcos[11]), polVertex(polIcos[1]), polVertex(polIcos[7])],"ICOS") # f16 = polFace([polVertex(polIcos[6]), polVertex(polIcos[7]), polVertex(polIcos[8])],"ICOS") # f17 = polFace([polVertex(polIcos[6]), polVertex(polIcos[8]), polVertex(polIcos[9])],"ICOS") # f18 = polFace([polVertex(polIcos[6]), polVertex(polIcos[9]), polVertex(polIcos[10])],"ICOS") # f19 = polFace([polVertex(polIcos[6]), polVertex(polIcos[10]), polVertex(polIcos[11])],"ICOS") # f20 = polFace([polVertex(polIcos[6]), polVertex(polIcos[11]), polVertex(polIcos[7])],"ICOS") degrees = 180 / pi icosahedronVert = [[0, 90], [0, -90]] for i in range(0, 10): theta = math.atan(0.5) * degrees phi = (i * 36 + 180) % 360 - 180 icosahedronVert.append([phi, (theta if i & 1 else -theta)]) f1 = polFace([ polVertex(icosahedronVert[0]), polVertex(icosahedronVert[3]), polVertex(icosahedronVert[11]) ], "ICOS", "A") f2 = polFace([ polVertex(icosahedronVert[0]), polVertex(icosahedronVert[5]), polVertex(icosahedronVert[3]) ], "ICOS", "B") f3 = polFace([ polVertex(icosahedronVert[0]), polVertex(icosahedronVert[7]), polVertex(icosahedronVert[5]) ], "ICOS", "C") f4 = polFace([ polVertex(icosahedronVert[0]),
import matplotlib.pyplot as plt degrees = 180 / pi asin1_3 = math.asin(1 / 3) vertices = [[0, 90], [-180, asin1_3 * degrees], [-60, asin1_3 * degrees], [60, asin1_3 * degrees]] # centroidLat = -(asin1_3 * degrees) # centers = [[0, 90], # [-120, centroidLat], # [0,centroidLat], # [120, centroidLat]] f1 = polFace( [polVertex(vertices[1]), polVertex(vertices[2]), polVertex(vertices[3])], "TETRA") f2 = polFace( [polVertex(vertices[0]), polVertex(vertices[2]), polVertex(vertices[3])], "TETRA") f3 = polFace( [polVertex(vertices[0]), polVertex(vertices[1]), polVertex(vertices[2])], "TETRA") f4 = polFace( [polVertex(vertices[0]), polVertex(vertices[3]), polVertex(vertices[1])], "TETRA")
import math from math import pi import imageio as im import matplotlib.pyplot as plt from PIL import Image from datetime import datetime degrees = 180 / pi asin1_3 = math.asin(1 / 3) phi1 = math.atan(math.sqrt(1 / 2)) * degrees cube = [[0 + 45, phi1], [90 + 45, phi1], [180 + 45, phi1], [-90 + 45, phi1], [0 + 45, -phi1], [90 + 45, -phi1], [180 + 45, -phi1], [-90 + 45, -phi1]] f1 = polFace([ polVertex(cube[0]), polVertex(cube[3]), polVertex(cube[2]), polVertex(cube[1]) ], "CUBE", "A") f2 = polFace([ polVertex(cube[0]), polVertex(cube[1]), polVertex(cube[5]), polVertex(cube[4]) ], "CUBE", "B") f3 = polFace([ polVertex(cube[1]), polVertex(cube[2]), polVertex(cube[6]), polVertex(cube[5])
[-1 / sqrt5, (5 + sqrt5) / 10, (np.sqrt((5 - sqrt5) / 10))], [-1 / sqrt5, (-5 + sqrt5) / 10, (np.sqrt((5 + sqrt5) / 10))]] for elm in cartIcos: polIcos.append(cartesianToLatLon(elm[1], elm[2], elm[0])) print(polIcos) icosahedronFacesPointUp = [[0, 1, 2], [0, 2, 3], [0, 3, 4], [0, 4, 5], [0, 5, 1], [1, 7, 2], [2, 8, 3], [3, 9, 4], [4, 10, 5], [5, 11, 1], [7, 2, 8], [8, 3, 9], [9, 4, 10], [10, 5, 11], [11, 1, 7], [6, 7, 8], [6, 8, 9], [6, 9, 10], [6, 10, 11], [6, 11, 7]] f1 = polFace( [polVertex(polIcos[0]), polVertex(polIcos[1]), polVertex(polIcos[2])]) f2 = polFace( [polVertex(polIcos[0]), polVertex(polIcos[2]), polVertex(polIcos[3])]) f3 = polFace( [polVertex(polIcos[0]), polVertex(polIcos[3]), polVertex(polIcos[4])]) f4 = polFace( [polVertex(polIcos[0]), polVertex(polIcos[4]), polVertex(polIcos[5])]) f5 = polFace(