def main(t_current): # Call the police API api = PoliceAPI() # Define tables crime_categories = pd.DataFrame({'id': [], 'description': []}) outcome_categories = pd.DataFrame({'id': [], 'description': []}) streets = pd.DataFrame({'id': [], 'name': []}) crimes = pd.DataFrame({ 'persistent_id': [], 'category': [], 'street': [], 'city': [], 'latitude': [], 'longitude': [], 'date': [], 'context': [] }) outcomes = pd.DataFrame({ 'crime': [], 'category': [], 'date': [], 'person_id': [] }) # Transform dates into pandas Series for better manipulation dates = pd.Series(api.get_dates()) # Get Forces forces = api.get_forces() # Get neighbourhoods neighbourhoods = [f.neighbourhoods for f in forces] nb_flat = [n for sublist in neighbourhoods for n in sublist] s_nb_flat = pd.Series(nb_flat).unique() first_job(api, dates, t_current) t_last_update = api.get_latest_date() second_job(api, dates, t_last_update, t_current) last_job(api, t_current)
'Drugs': 'Blue', 'Bicycle theft': 'Green', 'Criminal damage and arson': 'light yellow', 'Other theft': 'light green', 'Possession of weapons': 'cyan', 'Public order': 'white', 'Shoplifting': 'grey', 'Theft from the person': 'light orange', 'Vehicle crime': 'brown', 'Other crime': 'light blue', 'Robbery': 'Yellow' } police = PoliceAPI() # Get the date range of data dt_range = police.get_dates() def format_date_range(date_range): month_dict = { 1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug', 9: 'Sep', 10: 'Oct', 11: 'Nov',