コード例 #1
0
ファイル: agent.py プロジェクト: yandongmars/StarCraft
 def __init__(self, args):
     self.n_actions = args.n_actions
     self.n_agents = args.n_agents
     self.state_shape = args.state_shape
     self.obs_shape = args.obs_shape
     alg = args.alg
     if alg.find('reinforce') > -1:
         self.policy = Reinforce(args)
     elif alg.find('coma') > -1:
         self.policy = COMA(args)
     elif alg.find('central_v') > -1:
         self.policy = CentralV(args)
     else:
         raise Exception("No such algorithm")
     self.args = args
     print('Init CommAgents')
コード例 #2
0
ファイル: agent.py プロジェクト: zhangmwg/StarCraft
 def __init__(self, args):
     self.n_actions = args.n_actions
     self.n_agents = args.n_agents
     self.state_shape = args.state_shape
     self.obs_shape = args.obs_shape
     if args.alg == 'vdn':
         from policy.vdn import VDN
         self.policy = VDN(args)
     elif args.alg == 'iql':
         from policy.iql import IQL
         self.policy = IQL(args)
     elif args.alg == 'qmix':
         from policy.qmix import QMIX
         self.policy = QMIX(args)
     elif args.alg == 'coma':
         from policy.coma import COMA
         self.policy = COMA(args)
     elif args.alg == 'qtran_alt':
         from policy.qtran_alt import QtranAlt
         self.policy = QtranAlt(args)
     elif args.alg == 'qtran_base':
         from policy.qtran_base import QtranBase
         self.policy = QtranBase(args)
     elif args.alg == 'maven':
         from policy.maven import MAVEN
         self.policy = MAVEN(args)
     elif args.alg == 'central_v':
         from policy.central_v import CentralV
         self.policy = CentralV(args)
     elif args.alg == 'reinforce':
         from policy.reinforce import Reinforce
         self.policy = Reinforce(args)
     else:
         raise Exception("No such algorithm")
     self.args = args
コード例 #3
0
 def __init__(self, args):
     self.n_actions = args.n_actions
     self.n_agents = args.n_agents
     self.state_shape = args.state_shape
     self.obs_shape = args.obs_shape
     if args.alg == 'vdn':
         self.policy = VDN(args)
     elif args.alg == 'qmix':
         self.policy = QMIX(args)
     elif args.alg == 'coma':
         self.policy = COMA(args)
     elif args.alg == 'qtran_alt':
         self.policy = QtranAlt(args)
     elif args.alg == 'qtran_base':
         self.policy = QtranBase(args)
     elif args.alg == 'maven':
         self.policy = MAVEN(args)
     elif args.alg == 'central_v':
         self.policy = CentralV(args)
     elif args.alg == 'reinforce':
         self.policy = Reinforce(args)
     else:
         raise Exception("No such algorithm")
     self.args = args
     print('Init Agents')
コード例 #4
0
ファイル: agent.py プロジェクト: Locke637/vdn_magents
 def __init__(self, args):
     self.n_actions = args.n_actions
     self.n_agents = args.n_agents * 2
     self.state_shape = args.state_shape
     self.obs_shape = args.obs_shape
     self.idact_shape = args.id_dim + args.n_actions
     self.search_actions = np.eye(args.n_actions)
     self.search_ids = np.zeros(self.n_agents)
     if args.alg == 'vdn':
         self.policy = VDN(args)
     elif args.alg == 'qmix':
         self.policy = QMIX(args)
     elif args.alg == 'ours':
         self.policy = OURS(args)
     elif args.alg == 'coma':
         self.policy = COMA(args)
     elif args.alg == 'qtran_alt':
         self.policy = QtranAlt(args)
     elif args.alg == 'qtran_base':
         self.policy = QtranBase(args)
     elif args.alg == 'maven':
         self.policy = MAVEN(args)
     elif args.alg == 'central_v':
         self.policy = CentralV(args)
     elif args.alg == 'reinforce':
         self.policy = Reinforce(args)
     else:
         raise Exception("No such algorithm")
     if args.use_fixed_model:
         args_goal_a = get_common_args()
         args_goal_a.load_model = True
         args_goal_a = get_mixer_args(args_goal_a)
         args_goal_a.learn = False
         args_goal_a.epsilon = 0  # 1
         args_goal_a.min_epsilon = 0
         args_goal_a.map = 'battle'
         args_goal_a.n_actions = args.n_actions
         args_goal_a.episode_limit = args.episode_limit
         args_goal_a.n_agents = args.n_agents
         args_goal_a.state_shape = args.state_shape
         args_goal_a.feature_shape = args.feature_shape
         args_goal_a.view_shape = args.view_shape
         args_goal_a.obs_shape = args.obs_shape
         args_goal_a.real_view_shape = args.real_view_shape
         args_goal_a.load_num = args.load_num
         args_goal_a.use_ja = False
         args_goal_a.mlp_hidden_dim = [512, 512]
         self.fixed_policy = VDN_F(args_goal_a)
     self.args = args
     print('Init Agents')
コード例 #5
0
ファイル: agent.py プロジェクト: yandongmars/StarCraft
class CommAgents:
    def __init__(self, args):
        self.n_actions = args.n_actions
        self.n_agents = args.n_agents
        self.state_shape = args.state_shape
        self.obs_shape = args.obs_shape
        alg = args.alg
        if alg.find('reinforce') > -1:
            self.policy = Reinforce(args)
        elif alg.find('coma') > -1:
            self.policy = COMA(args)
        elif alg.find('central_v') > -1:
            self.policy = CentralV(args)
        else:
            raise Exception("No such algorithm")
        self.args = args
        print('Init CommAgents')

    # 根据weights得到概率,然后再根据epsilon选动作
    def choose_action(self, weights, avail_actions, epsilon, evaluate=False):
        weights = weights.unsqueeze(0)
        avail_actions = torch.tensor(avail_actions,
                                     dtype=torch.float32).unsqueeze(0)
        action_num = avail_actions.sum(dim=1, keepdim=True).float().repeat(
            1, avail_actions.shape[-1])  # 可以选择的动作的个数
        # 先将Actor网络的输出通过softmax转换成概率分布
        prob = torch.nn.functional.softmax(weights, dim=-1)
        # 在训练的时候给概率分布添加噪音
        prob = ((1 - epsilon) * prob +
                torch.ones_like(prob) * epsilon / action_num)
        prob[avail_actions == 0] = 0.0  # 不能执行的动作概率为0
        """
        不能执行的动作概率为0之后,prob中的概率和不为1,这里不需要进行正则化,因为torch.distributions.Categorical
        会将其进行正则化。要注意在训练的过程中没有用到Categorical,所以训练时取执行的动作对应的概率需要再正则化。
        """

        if epsilon == 0 and evaluate:
            # 测试时直接选最大的
            action = torch.argmax(prob)
        else:
            action = Categorical(prob).sample().long()
        return action

    def get_action_weights(self, obs, last_action):
        obs = torch.tensor(obs, dtype=torch.float32)
        last_action = torch.tensor(last_action, dtype=torch.float32)
        inputs = list()
        inputs.append(obs)
        # 给obs添加上一个动作、agent编号
        if self.args.last_action:
            inputs.append(last_action)
        if self.args.reuse_network:
            inputs.append(torch.eye(self.args.n_agents))
        inputs = torch.cat([x for x in inputs], dim=1)
        if self.args.cuda:
            inputs = inputs.cuda()
            self.policy.eval_hidden = self.policy.eval_hidden.cuda()
        weights, self.policy.eval_hidden = self.policy.eval_rnn(
            inputs, self.policy.eval_hidden)
        weights = weights.reshape(self.args.n_agents, self.args.n_actions)
        return weights.cpu()

    def _get_max_episode_len(self, batch):
        terminated = batch['terminated']
        episode_num = terminated.shape[0]
        max_episode_len = 0
        for episode_idx in range(episode_num):
            for transition_idx in range(self.args.episode_limit):
                if terminated[episode_idx, transition_idx, 0] == 1:
                    if transition_idx + 1 >= max_episode_len:
                        max_episode_len = transition_idx + 1
                    break
        return max_episode_len

    def train(self,
              batch,
              train_step,
              epsilon=None):  # coma在训练时也需要epsilon计算动作的执行概率
        # 每次学习时,各个episode的长度不一样,因此取其中最长的episode作为所有episode的长度
        max_episode_len = self._get_max_episode_len(batch)
        for key in batch.keys():
            batch[key] = batch[key][:, :max_episode_len]
        self.policy.learn(batch, max_episode_len, train_step, epsilon)
        if train_step > 0 and train_step % self.args.save_cycle == 0:
            self.policy.save_model(train_step)