def __init__(self, units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(Dense, self).__init__( units, activation=getters.get_activation(activation) if activation else activation, use_bias=use_bias, kernel_initializer=getters.get_initializer(kernel_initializer), bias_initializer=getters.get_initializer(bias_initializer), kernel_regularizer=getters.get_regularizer(kernel_regularizer), bias_regularizer=getters.get_regularizer(bias_regularizer), activity_regularizer=getters.get_regularizer(activity_regularizer), kernel_constraint=getters.get_constraint(kernel_constraint), bias_constraint=getters.get_constraint(bias_constraint), **kwargs)
def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(Conv2D, self).__init__( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=getters.get_activation(activation) if activation else activation, use_bias=use_bias, kernel_initializer=getters.get_initializer(kernel_initializer), bias_initializer=getters.get_initializer(bias_initializer), kernel_regularizer=getters.get_regularizer(kernel_regularizer), bias_regularizer=getters.get_regularizer(bias_regularizer), activity_regularizer=getters.get_regularizer(activity_regularizer), kernel_constraint=getters.get_constraint(kernel_constraint), bias_constraint=getters.get_constraint(bias_constraint), **kwargs)
def __init__(self, units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., **kwargs): super(SimpleRNN, self).__init__( units=units, activation=getters.get_activation(activation), use_bias=use_bias, kernel_initializer=getters.get_initializer(kernel_initializer), recurrent_initializer=getters.get_initializer(recurrent_initializer), bias_initializer=getters.get_initializer(bias_initializer), kernel_regularizer=getters.get_regularizer(kernel_regularizer), recurrent_regularizer=getters.get_regularizer(recurrent_regularizer), bias_regularizer=getters.get_regularizer(bias_regularizer), activity_regularizer=getters.get_regularizer(activity_regularizer), kernel_constraint=getters.get_constraint(kernel_constraint), recurrent_constraint=getters.get_constraint(recurrent_constraint), bias_constraint=getters.get_constraint(bias_constraint), dropout=dropout, recurrent_dropout=recurrent_dropout, **kwargs)
def create_global_counter(collection, name, graph=None): """Create global counter tensor in graph. Args: collection: the counter's collection. name: the counter's name. graph: The graph in which to create the global counter tensor. If missing, use default graph. Returns: Global step tensor. Raises: ValueError: if global counter tensor is already defined. """ graph = graph or tf.get_default_graph() if get_global_counter(collection, name, graph) is not None: raise ValueError("`{}` already exists.".format(collection)) # Create in proper graph and base name_scope. with graph.as_default() as g, g.name_scope(None): return variable( collection, shape=[], dtype=tf.int64, initializer=getters.get_initializer('zeros', dtype=tf.int64), trainable=False, collections=[tf.GraphKeys.GLOBAL_VARIABLES, collection])
def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer='glorot_uniform', pointwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, **kwargs): super(SeparableConv2D, self).__init__( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, depth_multiplier=depth_multiplier, activation=getters.get_activation(activation), use_bias=use_bias, depthwise_initializer=getters.get_initializer( depthwise_initializer), pointwise_initializer=getters.get_initializer( pointwise_initializer), bias_initializer=getters.get_initializer(bias_initializer), depthwise_regularizer=getters.get_regularizer( depthwise_regularizer), pointwise_regularizer=getters.get_regularizer( pointwise_regularizer), bias_regularizer=getters.get_regularizer(bias_regularizer), activity_regularizer=getters.get_regularizer(activity_regularizer), depthwise_constraint=getters.get_constraint(depthwise_constraint), pointwise_constraint=getters.get_constraint(pointwise_constraint), bias_constraint=getters.get_constraint(bias_constraint), **kwargs)
def variable(name, shape=None, dtype=tf.float32, initializer=None, regularizer=None, trainable=True, collections=None, device='', restore=True): """Instantiate a new variable. Args: name: `str`. A name for this variable. shape: list of `int`. The variable shape (optional). dtype: `type`. The variable data type. initializer: `str` or `Tensor`. The variable initialization. regularizer: `str` or `Tensor`. The variable regularizer. trainable: `bool`. If True, this variable weights will be trained. collections: `str`. A collection to add the new variable to (optional). device: `str`. Device ID to store the variable. Default: '/cpu:0'. restore: `bool`. Restore or not this variable when loading a pre-trained model. Returns: A Variable. """ if isinstance(initializer, six.string_types): initializer = getters.get_initializer(initializer) # Remove shape param if initializer is a Tensor if not callable(initializer) and isinstance(initializer, tf.Tensor): shape = None if isinstance(regularizer, six.string_types): regularizer = getters.get_regularizer(regularizer) with tf.device(device_name_or_function=device): var = tf.get_variable(name=name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, trainable=trainable, collections=collections) if not restore: # TODO adapt restoring saver tf.add_to_collection(name=tf.GraphKeys.EXCL_RESTORE_VARIABLES, value=var) return var
def __init__(self, input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None, **kwargs): super(Embedding, self).__init__( input_dim=input_dim, output_dim=output_dim, embeddings_initializer=getters.get_initializer( embeddings_initializer), embeddings_regularizer=getters.get_regularizer( embeddings_regularizer), activity_regularizer=getters.get_regularizer(activity_regularizer), embeddings_constraint=getters.get_constraint( embeddings_constraint), mask_zero=mask_zero, input_length=input_length, **kwargs)