def ginput_check_points(df, rectangles, regr): get_ipython().magic('matplotlib auto') time.sleep(3) plt.clf() plt.subplot(1, 2, 1) plt.gca().axis('equal') plt.gca().set_title('triple click to quit') plot_rectangles(rectangles, names=True) plot_numbers = sorted(set(df.plot_nr)) for nr in plot_numbers: d = df[df.plot_nr == nr] plt.plot(d.x, d.y, '.') return _ginput_show_info(df, _show_reg_fun(regr))
def test_nrs(df, plot_numbers): plot_rectangles(rectangles, names=True) for nr in plot_numbers: d = df[df.plot_nr == nr] plt.plot(d.x, d.y, '.')
treatments = experiment.treatments treatment_names = sr.find_treatment_names(treatments) #FOR REFERENCE: This is copied from all_e22_experiments.py #treatments = {int(x[0]): {'mixture': x[1], # 'rock_type': x[2], # 'fertilizer': x[3], # 'experiment': x[4]} #Plot size to show within python window, unless specified otherwise later on plt.rcParams['figure.figsize'] = (10, 6) # Displays a plot of the rectangles, as specified in the experiment file (not for buckets) plt.cla() plot_rectangles(rectangles) # with treatments: plt.cla() keys = list(rectangles) r = [rectangles[k] for k in keys] tr = ['_'.join(treatments[k].values()) for k in keys]# todo plot_rectangles(r, tr) plt.show() # How to do regressions: The next line makes the "regressor # object" regr which will be used further below. It contains the # functions and parameters for doing the regressions. The parameters # are collected in the dict named options. (Organizing the code this # way makes it easier to replace the regression function with your own # functions.)