コード例 #1
0
def downsample_gt_data(image, metadata, gt_polygons, normed_disp_field_maps,
                       downsampling_factor):
    # First, correct the downsampling_factor so that:
    # A downsampling_factor of 1 results in a final pixel_size equal to config.REFERENCE_PIXEL_SIZE
    # A downsampling_factor of 2 results in a final pixel_size equal to 2 * config.REFERENCE_PIXEL_SIZE
    corrected_downsampling_factor = downsampling_factor * config.REFERENCE_PIXEL_SIZE / metadata[
        "pixelsize"]
    scale = 1 / corrected_downsampling_factor
    downsampled_image = skimage.transform.rescale(image,
                                                  scale,
                                                  order=3,
                                                  preserve_range=True,
                                                  multichannel=True)
    downsampled_image = downsampled_image.astype(image.dtype)
    downsampled_gt_polygons = polygon_utils.rescale_polygon(gt_polygons, scale)
    downsampled_normed_disp_field_maps = np.empty(
        (normed_disp_field_maps.shape[0],
         round(normed_disp_field_maps.shape[1] /
               corrected_downsampling_factor),
         round(normed_disp_field_maps.shape[2] /
               corrected_downsampling_factor),
         normed_disp_field_maps.shape[3]))
    for i in range(normed_disp_field_maps.shape[0]):
        downsampled_normed_disp_field_maps[i] = skimage.transform.rescale(
            normed_disp_field_maps[i],
            scale,
            order=3,
            preserve_range=True,
            multichannel=True)
    return downsampled_image, downsampled_gt_polygons, downsampled_normed_disp_field_maps
コード例 #2
0
def rescale_data(image, polygons, scale):
    downsampled_image = skimage.transform.rescale(image,
                                                  scale,
                                                  order=3,
                                                  preserve_range=True,
                                                  multichannel=True,
                                                  anti_aliasing=True)
    downsampled_image = downsampled_image.astype(image.dtype)
    downsampled_polygons = polygon_utils.rescale_polygon(polygons, scale)
    return downsampled_image, downsampled_polygons
コード例 #3
0
def downsample_gt_data(image, gt_polygons, normed_disp_field_maps, downsampling_factor):
    downsampled_image = skimage.transform.rescale(image, 1 / downsampling_factor, order=3, preserve_range=True, multichannel=True)
    downsampled_image = downsampled_image.astype(image.dtype)
    downsampled_gt_polygons = polygon_utils.rescale_polygon(gt_polygons, 1 / downsampling_factor)
    downsampled_normed_disp_field_maps = np.empty((normed_disp_field_maps.shape[0],
                                                   round(normed_disp_field_maps.shape[1] / downsampling_factor),
                                                   round(normed_disp_field_maps.shape[2] / downsampling_factor),
                                                   normed_disp_field_maps.shape[3]))
    for i in range(normed_disp_field_maps.shape[0]):
        downsampled_normed_disp_field_maps[i] = skimage.transform.rescale(normed_disp_field_maps[i], 1 / downsampling_factor, order=3, preserve_range=True, multichannel=True)
    return downsampled_image, downsampled_gt_polygons, downsampled_normed_disp_field_maps
コード例 #4
0
def sample_patches(params):
    raw_dirpath, tile_info, ds_fac, size, count, seed = params

    im_filepath = read.get_image_filepath(raw_dirpath, tile_info["city"],
                                          tile_info["number"])
    im_size = image_utils.get_image_size(im_filepath)
    polygon_list = read.load_polygons(raw_dirpath, read.POLYGON_DIRNAME,
                                      tile_info["city"], tile_info["number"])

    # Rescale data
    corrected_factor = ds_fac * REFERENCE_PIXEL_SIZE / tile_info["pixelsize"]
    scale_factor = 1 / corrected_factor
    im_size = (int(np.round(im_size[0] * scale_factor)),
               int(np.round(im_size[1] * scale_factor)))
    ds_polygon_list = polygon_utils.rescale_polygon(polygon_list,
                                                    1 / corrected_factor)

    bbox_list = image_utils.compute_patch_boundingboxes(im_size, size, size)

    random.seed(seed)
    random.shuffle(bbox_list)

    # Sample <count> patches in tile, making sure there is at least a polygon inside
    sampled_bbox_list = []
    for bbox in bbox_list:
        bbox_polygon_list = polygon_utils.filter_polygons_in_bounding_box(
            ds_polygon_list, bbox)
        if 1 <= len(bbox_polygon_list):
            sampled_bbox_list.append(bbox)
        if count <= len(sampled_bbox_list):
            break

    tile_info["bbox_list"] = sampled_bbox_list
    tile_info["scale_factor"] = scale_factor

    return tile_info