コード例 #1
0
    def __call__(self, args):
        run_results = misc.pickle_load(args.results)

        def meta_from_iter_result(iter_result):
            meta = TensorMetadata()
            for name, arr in iter_result.items():
                meta.add(name, dtype=arr.dtype, shape=arr.shape)
            return meta

        results_str = ""
        results_str += "==== Run Results ({:} runners) ====\n\n".format(
            len(run_results))

        for runner_name, iters in run_results.items():
            results_str += "---- Runner: {:} ({:} iterations) ----\n".format(
                runner_name, len(iters))

            for index, iter_result in enumerate(iters):
                if args.show_values:
                    for name, arr in iter_result.items():
                        results_str += "{:} [dtype={:}, shape={:}]\n{:}\n\n".format(
                            name, arr.dtype, arr.shape,
                            misc.indent_block(str(arr)))
                else:
                    iter_meta = meta_from_iter_result(iter_result)
                    if len(iters) > 1 and args.all:
                        results_str += misc.indent_block(
                            "Iteration: {:} | ".format(index))
                    results_str += "{:}\n".format(iter_meta)

                if not args.all:
                    break
            results_str += "\n"
        results_str = misc.indent_block(results_str, level=0)
        G_LOGGER.info(results_str)
コード例 #2
0
ファイル: precision.py プロジェクト: celidos/TensorRT_study
    def run(self, args):
        import tensorrt as trt

        if not self.makers[TrtLoaderArgs].calibration_cache:
            G_LOGGER.warning(
                "Not using a calibration cache. Using a calibration cache may significantly speed up the search process"
            )

        self.precision = {
            "float32": trt.float32,
            "float16": trt.float16
        }[args.precision]
        if self.precision == trt.float16 and not self.makers[
                TrtLoaderArgs].fp16:
            self.makers[TrtLoaderArgs].fp16 = True
        if self.precision == trt.float16 and not self.makers[
                TrtLoaderArgs].int8:
            G_LOGGER.warning(
                "Using float16 as the higher precision, but float16 is also the lowest precision available. Did you mean to set --int8 as well?"
            )

        if not any([
                self.makers[TrtLoaderArgs].tf32,
                self.makers[TrtLoaderArgs].fp16,
                self.makers[TrtLoaderArgs].int8
        ]):
            G_LOGGER.critical(
                "Please enable at least one precision besides float32 (e.g. --int8, --fp16)"
            )

        if self.makers[ModelArgs].model_type == "engine":
            G_LOGGER.critical(
                "The precision tool cannot work with engines, as they cannot be modified. "
                "Please provide a different format, such as an ONNX or TensorFlow model."
            )

        self.args = args

        self.golden = OrderedDict()
        self.golden.update(misc.pickle_load(args.golden))

        self.builder, self.network, self.parser = func.invoke(
            self.makers[TrtLoaderArgs].get_trt_network_loader())
        with self.builder, self.network, self.parser:
            indices = self.find()

        if indices is not None:
            G_LOGGER.info(
                "To achieve acceptable accuracy, try running layers: {:} in {:} precision"
                .format(indices, self.precision))
        else:
            G_LOGGER.critical(
                "Could not find a configuration that resulted in acceptable accuracy"
            )
コード例 #3
0
 def test_trt_exclude_outputs_with_layerwise(self):
     with tempfile.NamedTemporaryFile() as outfile0:
         run_polygraphy_run([
             ONNX_MODELS["identity_identity"].path, "--trt",
             "--trt-outputs", "mark", "all", "--trt-exclude-outputs",
             "identity_out_2", "--save-results", outfile0.name
         ])
         results = misc.pickle_load(outfile0.name)
         [result] = list(results.values())[0]
         assert len(result) == 1
         assert "identity_out_0" in result
コード例 #4
0
ファイル: data.py プロジェクト: celidos/TensorRT_study
    def run(self, args):
        data = misc.pickle_load(args.path)

        def meta_from_iter_result(iter_result):
            meta = TensorMetadata()
            for name, arr in iter_result.items():
                meta.add(name, dtype=arr.dtype, shape=arr.shape)
            return meta

        def str_from_iters(iters):
            out_str = ""
            for index, iter_result in enumerate(iters):
                if args.show_values:
                    for name, arr in iter_result.items():
                        out_str += "{:} [dtype={:}, shape={:}]\n{:}\n\n".format(
                            name, arr.dtype, arr.shape,
                            misc.indent_block(str(arr)))
                else:
                    iter_meta = meta_from_iter_result(iter_result)
                    if len(iters) > 1 and args.all:
                        out_str += misc.indent_block(
                            "Iteration: {:} | ".format(index))
                    out_str += "{:}\n".format(iter_meta)

                if not args.all:
                    break
            return out_str

        def display_results():
            results_str = ""
            results_str += "==== Run Results ({:} runners) ====\n\n".format(
                len(data))

            for runner_name, iters in data.items():
                results_str += "---- Runner: {:} ({:} iterations) ----\n".format(
                    runner_name, len(iters))
                results_str += str_from_iters(iters) + "\n"

            results_str = misc.indent_block(results_str, level=0).strip()
            G_LOGGER.info(results_str)

        def display_inputs():
            inputs_str = ""
            inputs_str += "==== Input Data ({:} iterations) ====\n\n".format(
                len(data))
            inputs_str += str_from_iters(data) + "\n"
            inputs_str = misc.indent_block(inputs_str, level=0).strip()
            G_LOGGER.info(inputs_str)

        if isinstance(data, RunResults):
            display_results()
        else:
            display_inputs()
コード例 #5
0
def test_onnx_rt_layerwise_outputs():
    with tempfile.NamedTemporaryFile() as outfile0:
        run_polygraphy_run([ONNX_MODELS["identity_identity"].path, "--onnxrt", "--onnx-outputs", "mark", "all", "--save-results", outfile0.name])
        results = misc.pickle_load(outfile0.name)
        [result] = list(results.values())[0]
        assert len(result) == 2