コード例 #1
0
def test_load_linear_regressor(m_):
    shape_dict = {"m": m_}
    m = pm.parameter("m")
    mu = pm.parameter(name="mu", default=1.0)
    x = pm.input("x", shape=(m))
    y = pm.input("y")
    w = pm.state("w", shape=(m))

    graph = pm.linear_regressor_train(x, w, y, mu, m)
    test_graph, input_info, out_info, keys = linear(m=m_, coarse=True)
    assert len(test_graph.nodes.keys()) == len(graph.nodes.keys())
    assert op_counts(test_graph) == op_counts(graph)

    shape_val_pass = pm.NormalizeGraph(shape_dict)
    new_graph = shape_val_pass(graph)
    test_res = new_graph(keys, input_info)
    np.testing.assert_allclose(test_res, out_info["w"])

    test_graph_lowered, input_info, new_out_info, keys = linear(m=m_)
    flatten_pass = pm.Lower({})
    test_flatten_pass = pm.Lower({})
    flattened_g = flatten_pass(new_graph)
    ref_lowered = test_flatten_pass(test_graph_lowered, {})
    assert len(ref_lowered.nodes.keys()) == len(flattened_g.nodes.keys())
    assert op_counts(ref_lowered) == op_counts(flattened_g)

    all_vals = flattened_g(keys, input_info)
    np.testing.assert_allclose(new_out_info["w"], all_vals)
コード例 #2
0
def test_multi_dim_norm():
    with pm.Node(name="elem") as graph:
        m = pm.parameter(name="m")
        n = pm.parameter(name="n")
        x = pm.input("x", shape=(m, n))
        w = pm.state("w", shape=(m, n))
        i = pm.index(0, m - 1, name="i")
        j = pm.index(0, n - 1, name="j")
        w[i, j] = (w[i, j] * x[i, j])
    m_ = 3
    n_ = 4
    x_ = np.random.randint(0, 10, m_ * n_).reshape((m_, n_))
    w_ = np.random.randint(0, 10, m_ * n_).reshape((m_, n_))
    coarse_eval = graph("w", x=x_, w=w_)
    np_result = x_ * w_
    np.testing.assert_allclose(coarse_eval, np_result)
    shape_pass = NormalizeGraph({"m": m_, "n": n_})
    graph_shapes = shape_pass(graph)
    shape_res = graph_shapes("w", x=x_, w=w_)
    np.testing.assert_allclose(shape_res, np_result)
    lower_pass = pm.Lower({})
    lowered_graph = lower_pass(graph_shapes, {})
    input_info = {}
    for i in range(m_):
        for j in range(n_):
            input_info[f"w/w({i}, {j})"] = w_[i, j]
            input_info[f"x/x({i}, {j})"] = x_[i, j]
    fine_grained_eval = lowered_graph("w/w(2, 3)", input_info)
    assert fine_grained_eval == np_result[2, 3]
コード例 #3
0
def test_conv_embedded_values(x_shape, w_shape, params):
    shape_dict = {
        "n": x_shape[0],
        "ic": x_shape[1],
        "ih": x_shape[2],
        "iw": x_shape[3],
        "nf": w_shape[0],
        "kh": w_shape[2],
        "kw": w_shape[3],
        "stride": params["stride"],
        "pad": params["pad"]
    }
    graph, input_info0, out_info, keys = conv(x_shape,
                                              w_shape,
                                              params,
                                              coarse=True,
                                              debug_matrix=True)

    ngraph, input_info1, out_info, keys = conv(x_shape,
                                               w_shape,
                                               params,
                                               coarse=False,
                                               debug_matrix=True)

    lower_pass = pm.Lower({})
    lowered = lower_pass(ngraph)

    pb_path = f"{OUTPATH}/{graph.name}.srdfg"
    pm.pb_store(lowered, OUTPATH)
    node = pm.pb_load(pb_path)
    assert len(node.nodes) == len(lowered.nodes)
    assert list(node.nodes.keys()) == list(lowered.nodes.keys())
コード例 #4
0
def from_onnx(filepath,
              infer_shapes=True,
              use_filename=True,
              lower=False,
              verbose=False):
    onnx_proto, graph_name = load_onnx_proto(filepath)
    onnx_proto = update_node_names(onnx_proto)
    onnx_proto = update_edge_names(onnx_proto)
    attr = get_model_attributes(onnx_proto)
    if infer_shapes:
        onnx_graph = shape_inference.infer_shapes(onnx_proto).graph
    else:
        onnx_graph = onnx_proto.graph
    for n in onnx_graph.node:
        if n.op_type not in NODE_NAMES and n.name not in NODE_NAMES:
            raise RuntimeError(
                f"Support for {n.op_type} or {n.name} is not currently included in PolyMath"
            )

    graph = generate_srdfg(onnx_graph, verbose=verbose)
    if use_filename:
        graph_name = filepath.split("/")[-1].split(".")[0]
        graph.set_name(graph_name)

    if lower:
        lower_pass = pm.Lower(ONNX_OP_NAMES)
        graph = lower_pass(graph)

    return graph
コード例 #5
0
def create_training_graph(graph,
                          loss_func="cross_entropy",
                          optimizer="sgd",
                          **optimizer_kwargs):
    autodiff_pass = pm.AutoDiffGraph(loss_func, optimizer, optimizer_kwargs)
    train_graph = autodiff_pass(graph)
    lower_pass = pm.Lower(pm.DNN_TRAINING_OPS)
    lowered_train_graph = lower_pass(train_graph)
    return lowered_train_graph
コード例 #6
0
def generate_tvm(graph, input_dict, filepath, context_dict=None):
    assert len(input_dict) > 0
    shape_dict = {k: v.shape if isinstance(v, np.ndarray) else v for k,v in input_dict.items()}
    shape_dict['populate'] = False
    shape_pass = pm.NormalizeGraph(shape_dict)
    lower_pass = pm.Lower(TVM_OPS)
    tvm_pass = TVMPass()
    shaped = shape_pass(graph)
    lowered = lower_pass(shaped)
    result = tvm_pass(lowered)
    return tvm_pass.tvm_ir['tvm_code']
コード例 #7
0
def test_linear(m_):
    shape_dict = {"m": m_}
    graph, input_info, out_info, keys = linear(**shape_dict, coarse=True)
    shape_val_pass = pm.NormalizeGraph(shape_dict)
    new_graph = shape_val_pass(graph)
    test_res = new_graph(keys, input_info)
    np.testing.assert_allclose(test_res, out_info["w"])
    graph, input_info, new_out_info, keys = linear(**shape_dict)
    flatten_pass = pm.Lower({})
    flattened_g = flatten_pass(new_graph)
    all_vals = flattened_g(keys, input_info)
    np.testing.assert_allclose(new_out_info["w"], all_vals)
コード例 #8
0
def test_translate_multi_dense(x1_shape, w1_shape, w2_shape):

    graph, input_info, out_info, keys = two_layer_dense(x1_shape, w1_shape, w2_shape, coarse=True, debug_matrix=True)

    tinput_info = copy.deepcopy(input_info)
    res0 = graph(keys, tinput_info)
    np.testing.assert_allclose(res0, out_info["y"].astype(res0.dtype))

    graph, input_info, out_info, keys = two_layer_dense(x1_shape, w1_shape, w2_shape, coarse=False, debug_matrix=True)

    lower_pass = pm.Lower({})
    lowered_graph = lower_pass(graph)
    res = lowered_graph(keys, input_info)
    np.testing.assert_allclose(np.asarray(res).reshape(out_info["y"].shape), out_info["y"].astype(res[0].dtype))
コード例 #9
0
def test_conv_embedded_values(x_shape, w_shape, params):
    shape_dict = {"n": x_shape[0], "ic": x_shape[1], "ih": x_shape[2], "iw": x_shape[3],
                  "nf": w_shape[0], "kh": w_shape[2], "kw": w_shape[3],
                  "stride": params["stride"], "pad": params["pad"]}
    graph, input_info0, out_info, keys = conv(x_shape, w_shape, params, coarse=True, debug_matrix=True)
    ngraph, input_info1, out_info, keys = conv(x_shape, w_shape, params, coarse=False, debug_matrix=True)

    lower_pass = pm.Lower({})
    lowered = lower_pass(ngraph)

    res0 = np.asarray(lowered(keys, input_info1)).reshape(out_info["out"].shape)
    np.testing.assert_allclose(res0, out_info["out"])
    tabla_path = f"{OUTPATH}/{graph.name}_tabla.json"
    tabla_ir, tabla_graph = pm.generate_tabla(graph,
                                              shape_dict,
                                              tabla_path,
                                              context_dict=input_info1, add_kwargs=True, debug=True)
コード例 #10
0
def generate_dnnweaver(graph,
                       input_dict,
                       filepath,
                       debug=False,
                       add_kwargs=False,
                       context_dict=None):
    shape_dict = {
        k: v.shape if isinstance(v, np.ndarray) else v
        for k, v in input_dict.items()
    }
    shape_dict['populate'] = False
    shape_pass = pm.NormalizeGraph(shape_dict, debug=debug)
    lower_pass = pm.Lower(DNNWEAVER_OPS, debug=debug)
    dnnw_pass = DNNWeaverPass(debug=debug)
    shaped = shape_pass(graph)
    lowered = lower_pass(shaped)
    result = dnnw_pass(lowered)
    return dnnw_pass.dnnw_ir['dnnweaver_code'], result
コード例 #11
0
def test_reco():
    m_ = 3
    n_ = 3
    k_ = 2
    graph, input_info, out_info, keys = reco(m=m_, n=n_, k=k_, coarse=True)
    shape_val_pass = pm.NormalizeGraph({"m": m_, "n": n_, "k": k_})
    new_graph = shape_val_pass(graph)

    test_res = new_graph(keys, input_info)
    np.testing.assert_allclose(test_res[0], out_info["w1"])
    np.testing.assert_allclose(test_res[1], out_info["w2"])

    graph, input_info, new_out_info, keys = reco(m=m_, n=n_, k=k_)
    flatten_pass = pm.Lower({})
    flattened_g = flatten_pass(new_graph)

    all_vals = flattened_g(keys, input_info)
    out1 = np.asarray(list(all_vals[0:6])).reshape(new_out_info["w2"].shape)
    out2 = np.asarray(list(all_vals[6:])).reshape(new_out_info["w2"].shape)
    np.testing.assert_allclose(new_out_info["w1"], out1)
    np.testing.assert_allclose(new_out_info["w2"], out2)
コード例 #12
0
def test_load_nested_linear_regressor(m_):
    shape_dict = {"m": m_}
    with pm.Node(name="nested_linear") as graph:
        m = pm.parameter(name="m")
        mu = pm.parameter(name="mu", default=1.0)
        x = pm.input("x", shape=(m))
        y = pm.input("y")
        w = pm.state("w", shape=(m))
        pm.linear_regressor_train(x, w, y, mu, m, name="linear_regressor")
        j = pm.index(0, m-1, name="j")
        tw = (w[j] - 4).set_name("tw")

    test_graph, input_info, out_info, keys = linear(m=m_, coarse=True)
    shape_val_pass = pm.NormalizeGraph(shape_dict)
    new_graph = shape_val_pass(graph)
    test_res = new_graph("tw", input_info)
    np.testing.assert_allclose(test_res, (out_info["w"] - 4))

    ref_graph, input_info, new_out_info, keys = linear(m=m_)
    flatten_pass = pm.Lower({})
    keys = [f"tw/tw({i},)" for i in range(m_)]

    flattened_g = flatten_pass(new_graph)
    all_vals = flattened_g(keys, input_info)
コード例 #13
0
ファイル: tabla_translate.py プロジェクト: zjuchenll/polymath
def generate_tabla(graph, input_dict, filepath, context_dict=None, add_kwargs=False, debug=True):
    assert len(input_dict) > 0
    shape_pass = pm.NormalizeGraph(input_dict, debug=debug)
    context_dict = context_dict or {}

    lower_pass = pm.Lower({}, debug=debug)
    print(f"Starting graph normalization...")
    shaped = shape_pass(graph)
    print(f"Finished graph normalization. Executing lower pass.")
    lowered = lower_pass(shaped)
    print(f"Finished graph lowering, generating TABLA dfg.")
    for k in list(context_dict.keys()):
        if k not in lowered.nodes:
            context_dict.pop(k)
    tabla_pass = TablaPass(context_dict, add_kwargs=add_kwargs, debug=debug)
    res = tabla_pass(lowered)
    print(f"Finished generating TABLA dfg, now storing to JSON file at {filepath}.")

    tabla_nodes = [node for _, node in tabla_pass.dfg.items()]

    with open(filepath, "w") as f:
        json.dump(tabla_nodes, f, indent=4)

    return tabla_nodes, res