コード例 #1
0
def test_linear_deserialize():

    graph_name = "linear_reg1"
    with pm.Node(name=graph_name) as graph:
        m = pm.placeholder("m")
        x_ = pm.placeholder("x", shape=(m))
        y_ = pm.placeholder("y")
        w_ = pm.placeholder("w", shape=(m))
        mu = pm.parameter(name="mu", default=1.0)
        i = pm.index(0, (m - 1).set_name("m-1"), name="i")
        h = pm.sum([i], (x_[i] * w_[i]).set_name("x*w"), name="h")
        d = (h - y_).set_name("h-y")
        g = (d * x_[i]).set_name("d*x")
        mug = (mu * g[i]).set_name("mu*g[i]")
        w_ = ((w_[i]) - mug).set_name("w_out")
    x = np.random.randint(0, 10, 10)
    y = np.random.randint(0, 10, 1)[0]
    w = np.random.randint(0, 10, 10)

    graph_res = graph("w_out", {"x": x, "y": y, "w": w})
    actual_res = w - ((np.sum(x * w) - y) * x) * 1.0

    np.testing.assert_allclose(graph_res, actual_res)
    cwd = Path(f"{__file__}").parent
    base_path = f"{cwd}/pmlang_examples"
    full_path = f"{base_path}/outputs"
    pb_path = f"{full_path}/{graph_name}.srdfg"
    pm.pb_store(graph, full_path)
    node = pm.pb_load(pb_path)
    new_graph_res = node("w_out", {"x": x, "y": y, "w": w})
    np.testing.assert_allclose(graph_res, new_graph_res)
    np.testing.assert_allclose(actual_res, new_graph_res)
コード例 #2
0
def test_single_dim_norm():
    with pm.Node(name="elem1") as graph:
        m = pm.parameter("m")
        x = pm.input("x", shape=m)
        w = pm.state("w", shape=m)
        i = pm.index(0, m - 1, name="i")
        w[i] = (w[i] * x[i])
    x_ = np.random.randint(0, 10, 3)
    w_ = np.random.randint(0, 10, 3)
    coarse_eval = graph("w", x=x_, w=w_)

    np_result = x_ * w_
    np.testing.assert_allclose(coarse_eval, np_result)
    shape_pass = NormalizeGraph({"m": 3})
    graph_shapes = shape_pass(graph)

    shape_res = graph_shapes("w", x=x_, w=w_)
    np.testing.assert_allclose(shape_res, np_result)
    lower_pass = Lower({})
    lowered_graph = lower_pass(graph_shapes)
    input_info = {f"w/w({i},)": w_[i] for i in range(len(w_))}
    input_info.update({f"x/x({i},)": x_[i] for i in range(len(x_))})
    fine_grained_eval = lowered_graph("w/w(1,)", input_info)

    assert fine_grained_eval == np_result[1]

    pb_path = f"{OUTPATH}/{graph.name}.srdfg"
    pm.pb_store(lowered_graph, OUTPATH)
    loaded_node = pm.pb_load(pb_path)
    input_info = {f"w/w({i},)": w_[i] for i in range(len(w_))}
    input_info.update({f"x/x({i},)": x_[i] for i in range(len(x_))})
    fine_grained_eval = loaded_node("w/w(1,)", input_info)
    assert fine_grained_eval == np_result[1]
コード例 #3
0
def test_linear_reg():
    m_ = 3
    graph, input_info, out_info, keys = linear(m=m_, coarse=True)
    coarse_eval = graph(keys, input_info)
    np.testing.assert_allclose(coarse_eval, out_info["w"])



    fgraph, input_info, out_info, keys = linear(m=m_, coarse=False)
    lower_pass = Lower({})
    lowered_graph = lower_pass(fgraph, {})
    all_vals = lowered_graph(keys, input_info)
    out = np.asarray(all_vals).reshape(out_info["w"].shape)

    np.testing.assert_allclose(out, out_info["w"])
    cwd = Path(f"{__file__}").parent
    base_path = f"{cwd}/pmlang_examples"
    full_path = f"{base_path}/outputs"
    pb_path = f"{full_path}/{graph.name}.srdfg"

    pm.pb_store(lowered_graph, full_path)

    loaded_node = pm.pb_load(pb_path)
    _, input_info, out_info, keys = linear(m=m_, coarse=False)

    loaded_res = loaded_node(keys, input_info)
    out = np.asarray(loaded_res).reshape(out_info["w"].shape)
    np.testing.assert_allclose(out, out_info["w"])
コード例 #4
0
def test_conv_embedded_values(x_shape, w_shape, params):
    shape_dict = {
        "n": x_shape[0],
        "ic": x_shape[1],
        "ih": x_shape[2],
        "iw": x_shape[3],
        "nf": w_shape[0],
        "kh": w_shape[2],
        "kw": w_shape[3],
        "stride": params["stride"],
        "pad": params["pad"]
    }
    graph, input_info0, out_info, keys = conv(x_shape,
                                              w_shape,
                                              params,
                                              coarse=True,
                                              debug_matrix=True)

    ngraph, input_info1, out_info, keys = conv(x_shape,
                                               w_shape,
                                               params,
                                               coarse=False,
                                               debug_matrix=True)

    lower_pass = pm.Lower({})
    lowered = lower_pass(ngraph)

    pb_path = f"{OUTPATH}/{graph.name}.srdfg"
    pm.pb_store(lowered, OUTPATH)
    node = pm.pb_load(pb_path)
    assert len(node.nodes) == len(lowered.nodes)
    assert list(node.nodes.keys()) == list(lowered.nodes.keys())
コード例 #5
0
ファイル: model_generator.py プロジェクト: he-actlab/polymath
def convert_torch_model(input_var, model, model_name, optimize_model, training_mode, to_polymath,
                        convert_data_format=False):
    f = io.BytesIO()
    mode = torch.onnx.TrainingMode.TRAINING if training_mode else torch.onnx.TrainingMode.EVAL
    if 'mask_rcnn' not in model_name:
        torch.onnx.export(model,  # model being run
                          input_var,  # model input (or a tuple for multiple inputs)
                          f,  # where to save the model (can be a file or file-like object)
                          export_params=True,  # store the trained parameter weights inside the model file
                          do_constant_folding=True,  # whether to execute constant folding for optimization
                          keep_initializers_as_inputs=True,
                          training=mode,
                          input_names=['input'],  # the model's input names
                          output_names=['output'],
                          opset_version=12)
    else:
        model.eval()
        # input_var = [(input_var,)]
        if isinstance(input_var[0][-1], dict):
            input_var = input_var[0] + ({},)
        else:
            input_var = input_var[0]

        dynamic_axes = {"images_tensors": [0, 1, 2], "boxes": [0, 1], "labels": [0],
                                        "scores": [0], "masks": [0, 1, 2]}
        torch.onnx.export(model,  # model being run
                          input_var,  # model input (or a tuple for multiple inputs)
                          f,  # where to save the model (can be a file or file-like object)
                          do_constant_folding=True,  # whether to execute constant folding for optimization
                          # training=mode,
                          input_names=["images_tensors"],
                          output_names=["boxes", "labels", "scores", "masks"],
                          dynamic_axes=dynamic_axes,
                          opset_version=_onnx_opset_version,
                          verbose=False,
                          # export_params=True,  # store the trained parameter weights inside the model file
                          # keep_initializers_as_inputs=True,
                          # operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN,
                          )
        print(type(f.getvalue()))
    model_proto = onnx.ModelProto.FromString(f.getvalue())
    print_nodes(model_proto)
    onnx.checker.check_model(model_proto)
    add_value_info_for_constants(model_proto)
    model_proto = onnx.shape_inference.infer_shapes(model_proto)
    filepath = f"{CWD}/{model_name}.onnx"
    if optimize_model:
        model_proto, check = simplify(model_proto)
        assert check
    model_proto = update_node_names(model_proto)
    model_proto = update_edge_names(model_proto)
    with open(filepath, "wb") as f:
        f.write(model_proto.SerializeToString())

    if to_polymath:
        graph = pm.from_onnx(filepath)
        pm.pb_store(graph, f"{CWD}/full_dnns/")
コード例 #6
0
def test_resnet18_train():
    filename = f"resnet18_train.onnx"
    filepath = f"{BENCH_DIR}/full_dnns/{filename}"
    assert Path(filepath).exists()
    graph = pm.from_onnx(filepath)
    full_path = f"{BENCH_DIR}/full_dnns"
    pb_path = f"{full_path}/resnet18_train.srdfg"
    pm.pb_store(graph, full_path)

    node = pm.pb_load(pb_path, verbose=True)
    assert len(node.nodes) == len(graph.nodes)
コード例 #7
0
def test_lenet():
    filename = f"lenet.onnx"
    full_path = f"{BENCH_DIR}/full_dnns"

    filepath = f"{full_path}/{filename}"
    pb_path = f"{full_path}/lenet.srdfg"

    assert Path(filepath).exists()
    graph = pm.from_onnx(filepath)
    pm.pb_store(graph, full_path)
    node = pm.pb_load(pb_path, verbose=True)
    assert len(node.nodes) == len(graph.nodes)
    for name, n in node.nodes.items():
        if n.op_name == "conv":
            print(n.kwargs.keys())
            break
コード例 #8
0
def test_svm_wifi(lr, delta, features, locations, train_size):
    shape_dict = {"n_locations": locations, "n_features": features}

    graph, input_info0, out_info, keys = svm_wifi(features, locations, coarse=True)
    tabla_path = f"{OUTPATH}/{graph.name}_{features}_{locations}_tabla.json"
    # res0 = graph(keys, input_info0)[0]
    # np.testing.assert_allclose(res0, out_info['weights'])

    ngraph, input_info1, out_info, keys = svm_wifi(features, locations, coarse=False)

    # tabla_path = f"{OUTPATH}/{graph.name}_{locations}_{features}_tabla.json"
    tabla_ir, tabla_graph = pm.generate_tabla(graph,
                                              shape_dict,
                                              tabla_path,
                                              context_dict=input_info1, add_kwargs=True)
    srdfg_path = f"{OUTPATH}/"

    pm.pb_store(tabla_graph, srdfg_path)
コード例 #9
0
def test_tabla_linear(m_):
    shape_dict = {"m": m_}
    graph, input_info, out_info, keys = linear(m=m_, coarse=True)
    lgraph, input_info, out_info, keys = linear(m=m_, coarse=False)
    cwd = Path(f"{__file__}").parent
    base_path = f"{cwd}/pmlang_examples"
    full_path = f"{base_path}/outputs"
    graph_name = f"{graph.name}_{m_}"
    tabla_path = f"{full_path}/{graph_name}_tabla.json"

    tabla_ir, tabla_graph = pm.generate_tabla(graph,
                                              shape_dict,
                                              tabla_path,
                                              context_dict=input_info,
                                              add_kwargs=True)
    cwd = Path(f"{__file__}").parent
    base_path = f"{cwd}/pmlang_examples"
    full_path = f"{base_path}/outputs"
    pb_path = f"{full_path}/{graph.name}.srdfg"
    pm.pb_store(graph, full_path)
    node = pm.pb_load(pb_path)
コード例 #10
0
def test_lower_group_op():
    with pm.Node(name="linear_reg1") as graph:
        m = pm.parameter(name="m")
        x = pm.input("x", shape=(m))
        y = pm.input("y")
        w = pm.state("w", shape=(m))
        i = pm.index(0, m - 1, name="i")
        h = pm.sum([i], w[i] * x[i], name="h")
    m_ = 3
    n_ = 3
    x_ = np.random.randint(0, 10, m_)
    w_ = np.random.randint(0, 10, (m_))
    np_result = np.sum(x_ * w_)
    np.testing.assert_allclose(graph("h", {"w": w_, "x": x_}), np_result)
    np.testing.assert_allclose(graph("h", w=w_, x=x_), np_result)
    shape_pass = NormalizeGraph({"m": m_, "n": n_})
    graph_shapes = shape_pass(graph)
    shape_res = graph_shapes("h", x=x_, w=w_)
    np.testing.assert_allclose(shape_res, np_result)

    lower_pass = Lower({})
    lowered_graph = lower_pass(graph_shapes)
    input_info = {f"w/w({i},)": w_[i] for i in range(len(w_))}
    input_info.update({f"x/x({i},)": x_[i] for i in range(len(x_))})
    #
    fine_grained_eval = lowered_graph("h/h(4,)", input_info)
    assert fine_grained_eval == np_result

    pb_path = f"{OUTPATH}/linear_reg1.srdfg"

    pm.pb_store(lowered_graph, OUTPATH)
    loaded_node = pm.pb_load(pb_path)  #
    input_info = {f"w/w({i},)": w_[i] for i in range(len(w_))}
    input_info.update({f"x/x({i},)": x_[i] for i in range(len(x_))})

    loaded_res = loaded_node("h/h(4,)", input_info)

    assert loaded_node.func_hash() == lowered_graph.func_hash()
    assert loaded_res == np_result
コード例 #11
0
def test_reco():
    m_ = 3
    n_ = 3
    k_ = 2
    shape_dict = {"m": n_, "k": k_, "n": n_}
    graph, input_info, out_info, keys = reco(coarse=True, **shape_dict)
    coarse_eval = graph(keys, input_info)
    np.testing.assert_allclose(coarse_eval[0], out_info["w1"])
    np.testing.assert_allclose(coarse_eval[1], out_info["w2"])


    fgraph, input_info, out_info, keys = reco(coarse=False, **shape_dict)
    lower_pass = Lower({})
    lowered_graph = lower_pass(fgraph, {})
    all_vals = lowered_graph(keys, input_info)
    w1_elems = np.prod(out_info["w1"].shape)
    w2_elems = np.prod(out_info["w2"].shape)
    out1 = np.asarray(list(all_vals[0:w1_elems])).reshape(out_info["w1"].shape)
    out2 = np.asarray(list(all_vals[w1_elems:])).reshape(out_info["w2"].shape)

    np.testing.assert_allclose(out1, out_info["w1"])
    np.testing.assert_allclose(out2, out_info["w2"])
    cwd = Path(f"{__file__}").parent
    base_path = f"{cwd}/pmlang_examples"
    full_path = f"{base_path}/outputs"
    pb_path = f"{full_path}/{graph.name}.srdfg"

    pm.pb_store(lowered_graph, full_path)

    loaded_node = pm.pb_load(pb_path)
    _, input_info, out_info, keys = reco(coarse=False, **shape_dict)

    loaded_res = loaded_node(keys, input_info)
    lres1 = np.asarray(list(loaded_res[0:w1_elems])).reshape(out_info["w1"].shape)
    lres2 = np.asarray(list(loaded_res[w1_elems:])).reshape(out_info["w2"].shape)
    np.testing.assert_allclose(lres1, out_info["w1"])
    np.testing.assert_allclose(lres2, out_info["w2"])
コード例 #12
0
def test_svm_wifi_inference(lr, delta, features, locations, train_size):
    shape_dict = {"n_locations": locations, "n_features": features}

    graph, input_info0, out_info, keys = svm_wifi_inf(features, locations, coarse=True)
    # tabla_path = f"{OUTPATH}/{graph.name}_{features}_{locations}_tabla.json"
    #
    res0 = graph(keys, input_info0)[0]
    np.testing.assert_allclose(res0, out_info['scores'])
    #
    ngraph, input_info1, out_info, keys = svm_wifi_inf(features, locations, coarse=False)
    #
    # lower_pass = pm.Lower({})
    # lowered = lower_pass(ngraph)
    # res1 = np.asarray(lowered(keys, input_info1)).reshape(out_info["scores"].shape)
    # np.testing.assert_allclose(res1, out_info["scores"])

    tabla_path = f"{OUTPATH}/{graph.name}_{locations}_{features}_tabla.json"
    tabla_ir, tabla_graph = pm.generate_tabla(graph,
                                              shape_dict,
                                              tabla_path,
                                              context_dict=input_info1, add_kwargs=True)
    srdfg_path = f"{OUTPATH}/"

    pm.pb_store(tabla_graph, srdfg_path)
コード例 #13
0
ファイル: load_onnx_model.py プロジェクト: ziqingzeng/public
def convert_model_to_polymath(model_path):
    graph = pm.from_onnx(model_path)
    root_path = Path(model_path).parent
    pm.pb_store(graph, f"{root_path}/srdfg/")