コード例 #1
0
ファイル: algorithms.py プロジェクト: laudehenri/rSymPy
def poly_half_gcdex(f, g, *symbols):
    """Half extended Euclidean algorithm.

       Efficiently computes gcd(f, g)  and one of the coefficients
       in extended Euclidean algorithm. Formally, given univariate
       polynomials f and g over an Euclidean domain, computes s
       and h, such that h = gcd(f, g) and s*f = h (mod g).

       For more information on the implemented algorithm refer to:

       [1] M. Bronstein, Symbolic Integration I: Transcendental
           Functions, Second Edition, Springer-Verlang, 2005

    """
    if not isinstance(f, Poly):
        f = Poly(f, *symbols)
    elif symbols:
        raise SymbolsError("Redundant symbols were given")

    f, g = f.unify_with(g)

    if f.is_multivariate:
        raise MultivariatePolyError(f)

    symbols, flags = f.symbols, f.flags

    a = Poly(S.One, *symbols, **flags)
    b = Poly((), *symbols, **flags)

    while not g.is_zero:
        q, r = poly_div(f, g)

        f, g = g, r
        c = a - q * b
        a, b = b, c

    return a.div_term(f.LC), f.as_monic()
コード例 #2
0
ファイル: algorithms.py プロジェクト: gnulinooks/sympy
def poly_half_gcdex(f, g, *symbols):
    """Half extended Euclidean algorithm.

       Efficiently computes gcd(f, g)  and one of the coefficients
       in extended Euclidean algorithm. Formally, given univariate
       polynomials f and g over an Euclidean domain, computes s
       and h, such that h = gcd(f, g) and s*f = h (mod g).

       For more information on the implemented algorithm refer to:

       [1] M. Bronstein, Symbolic Integration I: Transcendental
           Functions, Second Edition, Springer-Verlang, 2005

    """
    if not isinstance(f, Poly):
        f = Poly(f, *symbols)
    elif symbols:
        raise SymbolsError("Redundant symbols were given")

    f, g = f.unify_with(g)

    if f.is_multivariate:
        raise MultivariatePolyError(f)

    symbols, flags = f.symbols, f.flags

    a = Poly(S.One, *symbols, **flags)
    b = Poly((), *symbols, **flags)

    while not g.is_zero:
        q, r = poly_div(f, g)

        f, g = g, r
        c = a - q*b
        a, b = b, c

    return a.div_term(f.LC), f.as_monic()
コード例 #3
0
ファイル: algorithms.py プロジェクト: laudehenri/rSymPy
def poly_groebner(f, *symbols, **flags):
    """Computes reduced Groebner basis for a set of polynomials.

       Given a set of multivariate polynomials F, find another set G,
       such that Ideal F = Ideal G and G is a reduced Groebner basis.

       The resulting basis is unique and has monic generators.

       Groebner bases can be used to choose specific generators for a
       polynomial ideal. Because these bases are unique you can check
       for ideal equality by comparing the Groebner bases.  To see if
       one polynomial lies in an ideal, divide by the elements in the
       base and see if the remainder vanishes.

       They can also be used to  solve systems of polynomial equations
       as,  by choosing lexicographic ordering,  you can eliminate one
       variable at a time, provided that the ideal is zero-dimensional
       (finite number of solutions).

       >>> from sympy import *
       >>> x,y = symbols('xy')

       >>> G = poly_groebner([x**2 + y**3, y**2-x], x, y, order='lex')

       >>> [ g.as_basic() for g in G ]
       [x - y**2, y**3 + y**4]

       For more information on the implemented algorithm refer to:

       [1] N.K. Bose, B. Buchberger, J.P. Guiver, Multidimensional
           Systems Theory and Applications, Springer, 2003, pp. 98+

       [2] A. Giovini, T. Mora, "One sugar cube, please" or Selection
           strategies in Buchberger algorithm, Proc. ISSAC '91, ACM

       [3] I.A. Ajwa, Z. Liu, P.S. Wang, Groebner Bases Algorithm,
           http://citeseer.ist.psu.edu/ajwa95grbner.html, 1995

       [4] D. Cox, J. Little, D. O'Shea, Ideals, Varieties and
           Algorithms, Springer, Second Edition, 1997, pp. 62

    """
    if isinstance(f, (tuple, list, set)):
        f, g = f[0], list(f[1:])

        if not isinstance(f, Poly):
            f = Poly(f, *symbols, **flags)
        elif symbols or flags:
            raise SymbolsError("Redundant symbols or flags were given")

        f, g = f.unify_with(g)

        symbols, flags = f.symbols, f.flags
    else:
        if not isinstance(f, Poly):
            f = Poly(f, *symbols, **flags)
        elif symbols or flags:
            raise SymbolsError("Redundant symbols or flags were given")

        return [f.as_monic()]

    compare = monomial_cmp(flags.get('order'))

    f = [h for h in [f] + g if h]

    if not f:
        return [Poly((), *symbols, **flags)]

    R, P, G, B, F = set(), set(), set(), {}, {}

    for i, h in enumerate(f):
        F[h] = i
        R.add(i)

    def normal(g, H):
        h = poly_div(g, [f[i] for i in H])[1]

        if h.is_zero:
            return None
        else:
            if not h in F:
                F[h] = len(f)
                f.append(h)

            return F[h], h.LM

    def generate(R, P, G, B):
        while R:
            h = normal(f[R.pop()], G | P)

            if h is not None:
                k, LM = h

                G0 = set(g for g in G if monomial_div(f[g].LM, LM))
                P0 = set(p for p in P if monomial_div(f[p].LM, LM))

                G, P, R = G - G0, P - P0 | set([k]), R | G0 | P0

                for i, j in set(B):
                    if i in G0 or j in G0:
                        del B[(i, j)]

        G |= P

        for i in G:
            for j in P:
                if i == j:
                    continue

                if i < j:
                    k = (i, j)
                else:
                    k = (j, i)

                if k not in B:
                    B[k] = monomial_lcm(f[i].LM, f[j].LM)

        G = set([normal(f[g], G - set([g]))[0] for g in G])

        return R, P, G, B

    R, P, G, B = generate(R, P, G, B)

    while B:
        k, M = B.items()[0]

        for l, N in B.iteritems():
            if compare(M, N) == 1:
                k, M = l, N

        del B[k]

        i, j = k[0], k[1]
        p, q = f[i], f[j]

        p_LM, q_LM = p.LM, q.LM

        if M == monomial_mul(p_LM, q_LM):
            continue

        criterion = False

        for g in G:
            if g == i or g == j:
                continue

            if (min(i, g), max(i, g)) not in B:
                continue

            if (min(j, g), max(j, g)) not in B:
                continue

            if not monomial_div(M, f[g].LM):
                continue

            criterion = True
            break

        if criterion:
            continue

        p = p.mul_term(1 / p.LC, monomial_div(M, p_LM))
        q = q.mul_term(1 / q.LC, monomial_div(M, q_LM))

        h = normal(p - q, G)

        if h is not None:
            k, LM = h

            G0 = set(g for g in G if monomial_div(f[g].LM, LM))

            R, P, G = G0, set([k]), G - G0

            for i, j in set(B):
                if i in G0 or j in G0:
                    del B[(i, j)]

            R, P, G, B = generate(R, P, G, B)

    G = [f[g].as_monic() for g in G]

    G = sorted(G, compare, lambda p: p.LM)

    return list(reversed(G))
コード例 #4
0
ファイル: algorithms.py プロジェクト: gnulinooks/sympy
def poly_groebner(f, *symbols, **flags):
    """Computes reduced Groebner basis for a set of polynomials.

       Given a set of multivariate polynomials F, find another set G,
       such that Ideal F = Ideal G and G is a reduced Groebner basis.

       The resulting basis is unique and has monic generators.

       Groebner bases can be used to choose specific generators for a
       polynomial ideal. Because these bases are unique you can check
       for ideal equality by comparing the Groebner bases.  To see if
       one polynomial lies in an ideal, divide by the elements in the
       base and see if the remainder vanishes.

       They can also be used to  solve systems of polynomial equations
       as,  by choosing lexicographic ordering,  you can eliminate one
       variable at a time, provided that the ideal is zero-dimensional
       (finite number of solutions).

       >>> from sympy import *
       >>> x,y = symbols('xy')

       >>> G = poly_groebner([x**2 + y**3, y**2-x], x, y, order='lex')

       >>> [ g.as_basic() for g in G ]
       [x - y**2, y**3 + y**4]

       For more information on the implemented algorithm refer to:

       [1] N.K. Bose, B. Buchberger, J.P. Guiver, Multidimensional
           Systems Theory and Applications, Springer, 2003, pp. 98+

       [2] A. Giovini, T. Mora, "One sugar cube, please" or Selection
           strategies in Buchberger algorithm, Proc. ISSAC '91, ACM

       [3] I.A. Ajwa, Z. Liu, P.S. Wang, Groebner Bases Algorithm,
           http://citeseer.ist.psu.edu/ajwa95grbner.html, 1995

       [4] D. Cox, J. Little, D. O'Shea, Ideals, Varieties and
           Algorithms, Springer, Second Edition, 1997, pp. 62

    """
    if isinstance(f, (tuple, list, set)):
        f, g = f[0], list(f[1:])

        if not isinstance(f, Poly):
            f = Poly(f, *symbols, **flags)
        elif symbols or flags:
            raise SymbolsError("Redundant symbols or flags were given")

        f, g = f.unify_with(g)

        symbols, flags = f.symbols, f.flags
    else:
        if not isinstance(f, Poly):
            f = Poly(f, *symbols, **flags)
        elif symbols or flags:
            raise SymbolsError("Redundant symbols or flags were given")

        return [f.as_monic()]

    compare = monomial_cmp(flags.get('order'))

    f = [ h for h in [f] + g if h ]

    if not f:
        return [Poly((), *symbols, **flags)]

    R, P, G, B, F = set(), set(), set(), {}, {}

    for i, h in enumerate(f):
        F[h] = i; R.add(i)

    def normal(g, H):
        h = poly_div(g, [ f[i] for i in H ])[1]

        if h.is_zero:
            return None
        else:
            if not F.has_key(h):
                F[h] = len(f)
                f.append(h)

            return F[h], h.LM

    def generate(R, P, G, B):
        while R:
            h = normal(f[R.pop()], G | P)

            if h is not None:
                k, LM = h

                G0 = set(g for g in G if monomial_div(f[g].LM, LM))
                P0 = set(p for p in P if monomial_div(f[p].LM, LM))

                G, P, R = G - G0, P - P0 | set([k]), R | G0 | P0

                for i, j in set(B):
                    if i in G0 or j in G0:
                        del B[(i, j)]

        G |= P

        for i in G:
            for j in P:
                if i == j:
                    continue

                if i < j:
                   k = (i, j)
                else:
                   k = (j, i)

                if not B.has_key(k):
                    B[k] = monomial_lcm(f[i].LM, f[j].LM)

        G = set([ normal(f[g], G - set([g]))[0] for g in G ])

        return R, P, G, B

    R, P, G, B = generate(R, P, G, B)

    while B:
        k, M = B.items()[0]

        for l, N in B.iteritems():
            if compare(M, N) == 1:
                k, M = l, N

        del B[k]

        i, j = k[0], k[1]
        p, q = f[i], f[j]

        p_LM, q_LM = p.LM, q.LM

        if M == monomial_mul(p_LM, q_LM):
            continue

        criterion = False

        for g in G:
            if g == i or g == j:
                continue

            if not B.has_key((min(i, g), max(i, g))):
                continue

            if not B.has_key((min(j, g), max(j, g))):
                continue

            if not monomial_div(M, f[g].LM):
                continue

            criterion = True
            break

        if criterion:
            continue

        p = p.mul_term(1/p.LC, monomial_div(M, p_LM))
        q = q.mul_term(1/q.LC, monomial_div(M, q_LM))

        h = normal(p - q, G)

        if h is not None:
            k, LM = h

            G0 = set(g for g in G if monomial_div(f[g].LM, LM))

            R, P, G = G0, set([k]), G - G0

            for i, j in set(B):
                if i in G0 or j in G0:
                    del B[(i, j)]

            R, P, G, B = generate(R, P, G, B)

    G = [ f[g].as_monic() for g in G ]

    G = sorted(G, compare, lambda p: p.LM)

    return list(reversed(G))