コード例 #1
0
    def partialDiffcal(self, calmode, calMat_PreRot=[]):
        """
        Normally triple-differential calibration is performed, via makeDiffIms. This function lets
        you use a subset of polarisation states.
        'calmode' chooses which combination of differential measurements to perform. It uses the
        same numbering system as in diffcal_vampires.
        calType = '0'  ; 0 = Triple Calibration
                ; 1a = Double cal, Woll. + LCVR, HWP0
                ; 1b = Double cal, Woll. + LCVR, HWP45
                ; 2a = Double cal, Woll + HWP, LCVR1
                ; 2b = Double cal, Woll + HWP, LCVR2
                ; 3a = Double cal, LCVR + HWP, Woll.1
                ; 3b = Double cal, LCVR + HWP, Woll.2
                ; 4a = Single cal, Wollaston (LCVR1, HWP0)
                ; 4b = Single cal, Wollaston (LCVR1, HWP45)
                ; 4c = Single cal, Wollaston (LCVR2, HWP0)
                ; 4d = Single cal, Wollaston (LCVR2, HWP45)
                ; 5a = Single cal, LCVR (Woll1, HWP0)
                ; 5b = Single cal, LCVR (Woll1, HWP45)
                ; 6a = Single cal, HWP (LCVR1, Woll1)
        """
        allowedCalmodes = [
            '1a', '2a', '2b', '3a', '3b', '4a', '5a', '5b', '6a'
        ]
        if calmode not in allowedCalmodes:
            print('Please specify one of the following calmodes:')
            print(allowedCalmodes)

        imSz = self.allSummedImsOrig.shape[0]
        allPartialIms = []
        count = 0
        for cur in self.allPolzstateIms:
            if calmode is '1a':
                plusQ1 = cur.h0c0l0 - cur.h0c1l0
                minusQ1 = cur.h0c0l1 - cur.h0c1l1
                Q = (plusQ1 - minusQ1) / 2
                plusU1 = cur.h1c0l0 - cur.h1c1l0
                minusU1 = cur.h1c0l1 - cur.h1c1l1
                U = (plusU1 - minusU1) / 2
                Ia = (cur.h0c0l0 + cur.h0c1l0 + cur.h0c0l1 + cur.h0c1l1) / 4
                Ib = (cur.h1c0l0 + cur.h1c1l0 + cur.h1c0l1 + cur.h1c1l1) / 4
                I = (Ia + Ib) / 2
            if calmode is '2a':
                plusQ1 = cur.h0c0l0 - cur.h0c1l0
                minusQ1 = cur.h2c0l0 - cur.h2c1l0
                Q = (plusQ1 - minusQ1) / 2
                plusU1 = cur.h1c0l0 - cur.h1c1l0
                minusU1 = cur.h3c0l0 - cur.h3c1l0
                U = (plusU1 - minusU1) / 2
                Ia = (cur.h0c0l0 + cur.h0c1l0 + cur.h2c0l0 + cur.h2c1l0) / 4
                Ib = (cur.h1c0l0 + cur.h1c1l0 + cur.h3c0l0 + cur.h3c1l0) / 4
                I = (Ia + Ib) / 2
            if calmode is '2b':
                plusQ1 = cur.h0c0l1 - cur.h0c1l1
                minusQ1 = cur.h2c0l1 - cur.h2c1l1
                Q = (plusQ1 - minusQ1) / 2
                plusU1 = cur.h1c0l1 - cur.h1c1l1
                minusU1 = cur.h3c0l1 - cur.h3c1l1
                U = (plusU1 - minusU1) / 2
                Ia = (cur.h0c0l1 + cur.h0c1l1 + cur.h2c0l1 + cur.h2c1l1) / 4
                Ib = (cur.h1c0l1 + cur.h1c1l1 + cur.h3c0l1 + cur.h3c1l1) / 4
                I = (Ia + Ib) / 2
            if calmode is '3a':
                plusQ1 = cur.h0c0l0 - cur.h0c0l1
                minusQ1 = cur.h2c0l0 - cur.h2c0l1
                Q = (plusQ1 - minusQ1) / 2
                plusU1 = cur.h1c0l0 - cur.h1c0l1
                minusU1 = cur.h3c0l0 - cur.h3c0l1
                U = (plusU1 - minusU1) / 2
                Ia = (cur.h0c0l0 + cur.h0c0l1 + cur.h2c0l0 + cur.h2c0l1) / 4
                Ib = (cur.h1c0l0 + cur.h1c0l1 + cur.h3c0l0 + cur.h3c0l1) / 4
                I = (Ia + Ib) / 2
            if calmode is '3b':
                plusQ1 = cur.h0c1l0 - cur.h0c1l1
                minusQ1 = cur.h2c1l0 - cur.h2c1l1
                Q = (plusQ1 - minusQ1) / 2
                plusU1 = cur.h1c1l0 - cur.h1c1l1
                minusU1 = cur.h3c1l0 - cur.h3c1l1
                U = (plusU1 - minusU1) / 2
                Ia = (cur.h0c1l0 + cur.h0c1l1 + cur.h2c1l0 + cur.h2c1l1) / 4
                Ib = (cur.h1c1l0 + cur.h1c1l1 + cur.h3c1l0 + cur.h3c1l1) / 4
                I = (Ia + Ib) / 2
            if calmode is '4a':
                Q = cur.h0c0l0 - cur.h0c1l0
                U = cur.h1c0l0 - cur.h1c1l0
                I = (cur.h0c0l0 + cur.h0c1l0 + cur.h1c0l0 + cur.h1c1l0) / 4
            if calmode is '5a':
                Q = cur.h0c0l0 - cur.h0c0l1
                U = cur.h1c0l0 - cur.h1c0l1
                I = (cur.h0c0l0 + cur.h0c0l1 + cur.h1c0l0 + cur.h1c0l1) / 4
            if calmode is '5b':
                Q = cur.h2c0l0 - cur.h2c0l1
                U = cur.h3c0l0 - cur.h3c0l1
                I = (cur.h2c0l0 + cur.h2c0l1 + cur.h3c0l0 + cur.h3c0l1) / 4
            if calmode is '6a':
                Q = cur.h0c0l0 - cur.h2c0l0
                U = cur.h1c0l0 - cur.h3c0l0
                I = (cur.h0c0l0 + cur.h2c0l0 + cur.h1c0l0 + cur.h3c0l0) / 4

            curIm = np.zeros((imSz, imSz, 4))
            curIm[:, :, 0] = I
            curIm[:, :, 1] = Q
            curIm[:, :, 2] = U
            if len(calMat_PreRot) > 0:
                curIm = plz.matIm(curIm, calMat_PreRot)

            curIm = plz.rotImPolz(curIm, self.pasPerInd[count])
            allPartialIms.append(curIm)
            count += 1
        allPartialIms = np.asarray(allPartialIms)
        self.PartialImsSummed = np.mean(allPartialIms, axis=0)
        print('Done.')
コード例 #2
0
    def makeDiffIms(self,
                    doMask=False,
                    maskRad=2.,
                    maskVal=1.,
                    clim=[],
                    deRotate=True,
                    imRange=[],
                    showPlots=True,
                    maskfile=[],
                    calMat_PreRot=[],
                    calMat_PostRot=[],
                    twoCamMode=False,
                    doFlats=False,
                    Ibias=0):
        if Ibias > 0:
            print('WARNING: Stokes I bias applied')
        imSz = self.allSummedImsOrig.shape[0]
        nSets = self.allSummedImsOrig.shape[2]
        if len(imRange) > 0:
            imInd = range(imRange[0], imRange[1])
        else:
            imInd = range(nSets)
        paInds = range(0, len(self.allPAsOrig), 4)
        allPAs = np.asarray(self.allPAsOrig[paInds])
        npa = len(allPAs)
        allPAs = allPAs.reshape((int(npa / 4), 4))
        self.allPAsReshaped = allPAs
        nUsedSets = len(imInd)

        if len(maskfile) > 0:
            maskfileobj = np.load(maskfile)
            mask1 = maskfileobj['mask1']
            mask2 = maskfileobj['mask2']
        else:
            mask1 = np.ones((imSz, imSz))
            mask2 = np.ones((imSz, imSz))

        # Assemble rotated images
        allSummedIms = np.zeros([imSz, imSz, len(imInd), 4, 2, 2])
        pasPerInd = []
        curPaSet = []
        count = 0
        fileCount = 0  #TO keep PAs correct - correspsonds to original file index
        for ind in imInd:
            print("Rotating set: %d" % ind)
            for h in range(4):
                pa = allPAs[ind, h]
                curPaSet.append(pa)

                for c in range(2):
                    for l in range(2):
                        curImIn = self.allSummedImsOrig[:, :, ind, h, c, l]
                        # curImIn = allSummedImsOrig[:, :, ind, h, c, l] - h0c0l0med

                        if c == 0:
                            curImIn = curImIn * mask1
                        if c == 1:
                            curImIn = curImIn * mask2

                        if doMask:
                            maskPosn = imSz / 2
                            yGrid, xGrid = np.ogrid[-maskPosn:imSz - maskPosn,
                                                    -maskPosn:imSz - maskPosn]
                            maskInds = xGrid**2 + yGrid**2 <= maskRad**2
                            curImIn[maskInds] = maskVal

                        if doFlats:
                            # TODO - hacked in filenames etc right now - fix this.
                            flatNpzFile = np.load('flats750Aug2015.npz')
                            flatC1 = flatNpzFile['flatC1']
                            flatC2 = flatNpzFile['flatC2']
                            if c == 0:
                                curImIn = curImIn / flatC1
                            if c == 1:
                                curImIn = curImIn / flatC2

                        if twoCamMode:
                            if c == 1:
                                pass
                                curImIn = np.fliplr(curImIn)
                        else:
                            if c == 0:
                                # Rotate channel0 images
                                curImIn = ndimage.interpolation.rotate(
                                    np.fliplr(curImIn),
                                    bsRot,
                                    mode='nearest',
                                    reshape=False)
                        if deRotate:
                            allSummedIms[:, :, count, h, c, l] = \
                                ndimage.interpolation.rotate(curImIn, -pa, mode='nearest', reshape=False)
                        else:
                            allSummedIms[:, :, count, h, c, l] = curImIn

            # Approximate set of 4 HWP files as having single PA (the average over files)
            curPa = np.mean(np.asarray(curPaSet))
            curPaSet = []
            pasPerInd.append(curPa)
            count += 1

        pasPerInd = np.asarray(pasPerInd)
        self.pasPerInd = pasPerInd

        if saveAllSummedIms:
            fname = 'allSummedImsSaved.npz'
            np.savez(fname, allSummedIms=allSummedIms, pasPerInd=pasPerInd)

        # Make a set of Stokes images and derotate their polarisation
        self.allStokesIms = []
        self.allPolzstateIms = []
        self.allPolzratioQ = []
        self.allPolzratioU = []

        for count in range(nUsedSets):
            cur = self.sortPolzState(allSummedIms, count)
            self.allPolzstateIms.append(cur)

            plusQ1 = cur.h0c0l0 - cur.h0c1l0
            minusQ1 = cur.h0c0l1 - cur.h0c1l1
            Q1 = (plusQ1 - minusQ1) / 2
            I0 = (cur.h0c0l0 + cur.h0c1l0 + cur.h0c0l1 + cur.h0c1l1) / 4
            plusQ2 = cur.h2c0l0 - cur.h2c1l0
            minusQ2 = cur.h2c0l1 - cur.h2c1l1
            Q2 = (plusQ2 - minusQ2) / 2
            I2 = (cur.h2c0l0 + cur.h2c1l0 + cur.h2c0l1 + cur.h2c1l1) / 4
            Q = Q1 - Q2
            ############Q = Q1 + Q2
            I_02 = (I0 + I2) / 2
            #pQ = Q / I_02

            plusU1 = cur.h1c0l0 - cur.h1c1l0
            minusU1 = cur.h1c0l1 - cur.h1c1l1
            U1 = (plusU1 - minusU1) / 2
            I1 = (cur.h1c0l0 + cur.h1c1l0 + cur.h1c0l1 + cur.h1c1l1) / 4
            plusU2 = cur.h3c0l0 - cur.h3c1l0
            minusU2 = cur.h3c0l1 - cur.h3c1l1
            U2 = (plusU2 - minusU2) / 2
            I3 = (cur.h3c0l0 + cur.h3c1l0 + cur.h3c0l1 + cur.h3c1l1) / 4
            U = U1 - U2
            ##############U = U1 + U2
            I_13 = (I1 + I3) / 2
            #pU = U / I_13
            I = (I_02 + I_13) / 2

            curIm = np.zeros((imSz, imSz, 4))
            curIm[:, :,
                  0] = I + Ibias  # Ibias is a kludge to increase visibility of some features in fractional polz map
            curIm[:, :, 1] = Q
            curIm[:, :, 2] = U

            if len(calMat_PreRot) > 0:
                curIm = plz.matIm(curIm, calMat_PreRot)

            curIm = plz.rotImPolz(curIm, pasPerInd[count])

            if len(calMat_PostRot) > 0:
                curIm = plz.matIm(curIm, calMat_PostRot)

            self.allStokesIms.append(curIm)

            # Now calculate fractional polarisations using the triple-ratio method
            RQ1 = np.sqrt(
                (cur.h0c0l0 / cur.h0c1l0) / (cur.h0c0l1 / cur.h0c1l1))
            RQ2 = np.sqrt(
                (cur.h2c0l0 / cur.h2c1l0) / (cur.h2c0l1 / cur.h2c1l1))
            RQ = np.sqrt(RQ1 / RQ2)
            pQ = (RQ - 1) / (RQ + 1)

            RU1 = np.sqrt(
                (cur.h1c0l0 / cur.h1c1l0) / (cur.h1c0l1 / cur.h1c1l1))
            RU2 = np.sqrt(
                (cur.h3c0l0 / cur.h3c1l0) / (cur.h3c0l1 / cur.h3c1l1))
            RU = np.sqrt(RU1 / RU2)
            pU = (RU - 1) / (RU + 1)
            # cur_p_frac = np.sqrt(pQ**2 + pU**2)

            # Make dummy Stokes vector so can reuse the optimised rotImPolz
            curIm = np.zeros((imSz, imSz, 4))
            curIm[:, :, 1] = pQ
            curIm[:, :, 2] = pU

            curIm = plz.rotImPolz(curIm, pasPerInd[count])
            self.allPolzratioQ.append(curIm[:, :, 1])
            self.allPolzratioU.append(curIm[:, :, 2])

            if showPlots:
                self.plotPolzstates(index=count, fignum=1)
                self.plotStokesIms(index=count, fignum=2)

        allStokesImsArr = np.asarray(self.allStokesIms)
        self.StokesImsSummed = np.mean(allStokesImsArr, axis=0)

        summedpQ = np.asarray(self.allPolzratioQ).mean(axis=0)
        summedpU = np.asarray(self.allPolzratioU).mean(axis=0)
        self.polzRatioImsSummed = np.sqrt(summedpQ**2 + summedpU**2)
コード例 #3
0
ファイル: simplePDIFull_01.py プロジェクト: bdawg/SimplePDI
    def makeDiffIms(self,
                    doMask=False,
                    maskRad=2.,
                    maskVal=1.,
                    clim=[],
                    deRotate=True,
                    imRange=[],
                    showPlots=True):
        imSz = self.allSummedImsOrig.shape[0]
        nSets = self.allSummedImsOrig.shape[2]
        if len(imRange) > 0:
            imInd = range(imRange[0], imRange[1])
        else:
            imInd = range(nSets)
        paInds = range(0, len(self.allPAsOrig), 4)
        allPAs = np.asarray(self.allPAsOrig[paInds])
        npa = len(allPAs)
        allPAs = allPAs.reshape((npa / 4, 4))
        nUsedSets = len(imInd)

        # Assemble rotated images
        allSummedIms = np.zeros([imSz, imSz, len(imInd), 4, 2, 2])
        pasPerInd = []
        curPaSet = []
        count = 0
        fileCount = 0  #TO keep PAs correct - correspsonds to original file index
        for ind in imInd:
            print "Rotating set: %d" % ind
            for h in range(4):
                pa = allPAs[ind, h]
                curPaSet.append(pa)

                for c in range(2):
                    for l in range(2):
                        curImIn = self.allSummedImsOrig[:, :, ind, h, c, l]
                        # curImIn = allSummedImsOrig[:, :, ind, h, c, l] - h0c0l0med

                        if doMask:
                            maskPosn = imSz / 2
                            yGrid, xGrid = np.ogrid[-maskPosn:imSz - maskPosn,
                                                    -maskPosn:imSz - maskPosn]
                            maskInds = xGrid**2 + yGrid**2 <= maskRad**2
                            curImIn[maskInds] = maskVal

                        if c == 0:
                            # Rotate channel0 images
                            curImIn = ndimage.interpolation.rotate(
                                np.fliplr(curImIn),
                                bsRot,
                                mode='nearest',
                                reshape=False)
                        if deRotate:
                            allSummedIms[:, :, count, h, c, l] = \
                                ndimage.interpolation.rotate(curImIn, -pa, mode='nearest', reshape=False)
                        else:
                            allSummedIms[:, :, count, h, c, l] = curImIn

            # Approximate set of 4 HWP files as having single PA (the average over files)
            curPa = np.mean(np.asarray(curPaSet))
            curPaSet = []
            pasPerInd.append(curPa)
            count += 1

        pasPerInd = np.asarray(pasPerInd)
        self.pasPerInd = pasPerInd

        # Make a set of Stokes images and derotate their polarisation
        self.allStokesIms = []
        self.allPolzstateIms = []

        for count in range(nUsedSets):
            cur = self.sortPolzState(allSummedIms, count)
            self.allPolzstateIms.append(cur)

            plusQ1 = cur.h0c0l0 - cur.h0c1l0
            minusQ1 = cur.h0c0l1 - cur.h0c1l1
            Q1 = (plusQ1 - minusQ1) / 2
            I0 = (cur.h0c0l0 + cur.h0c1l0 + cur.h0c0l1 + cur.h0c1l1) / 4
            plusQ2 = cur.h2c0l0 - cur.h2c1l0
            minusQ2 = cur.h2c0l1 - cur.h2c1l1
            Q2 = (plusQ2 - minusQ2) / 2
            I2 = (cur.h2c0l0 + cur.h2c1l0 + cur.h2c0l1 + cur.h2c1l1) / 4
            Q = Q1 - Q2
            I_02 = (I0 + I2) / 2
            #pQ = Q / I_02

            plusU1 = cur.h1c0l0 - cur.h1c1l0
            minusU1 = cur.h1c0l1 - cur.h1c1l1
            U1 = (plusU1 - minusU1) / 2
            I1 = (cur.h1c0l0 + cur.h1c1l0 + cur.h1c0l1 + cur.h1c1l1) / 4
            plusU2 = cur.h3c0l0 - cur.h3c1l0
            minusU2 = cur.h3c0l1 - cur.h3c1l1
            U2 = (plusU2 - minusU2) / 2
            I3 = (cur.h3c0l0 + cur.h3c1l0 + cur.h3c0l1 + cur.h3c1l1) / 4
            U = U1 - U2
            I_13 = (I1 + I3) / 2
            #pU = U / I_13
            I = (I_02 + I_13) / 2

            curIm = np.zeros((imSz, imSz, 4))
            curIm[:, :, 0] = I
            curIm[:, :, 1] = Q
            curIm[:, :, 2] = U

            curIm = plz.rotImPolz(curIm, pasPerInd[count])
            self.allStokesIms.append(curIm)

            if showPlots:
                self.plotPolzstates(index=count, fignum=1)
                self.plotStokesIms(index=count, fignum=2)

        allStokesImsArr = np.asarray(self.allStokesIms)
        self.StokesImsSummed = np.mean(allStokesImsArr, axis=0)
コード例 #4
0
        #### RQ = RQ2 #### ignore HWP
        pQ = (RQ - 1) / (RQ + 1)

        RU1 = np.sqrt((cur.h1c0l0 / cur.h1c1l0) / (cur.h1c0l1 / cur.h1c1l1))
        RU2 = np.sqrt((cur.h3c0l0 / cur.h3c1l0) / (cur.h3c0l1 / cur.h3c1l1))
        RU = np.sqrt(RU1 / RU2)
        #### RU = RU2 #### ignore HWP
        pU = (RU - 1) / (RU + 1)
        #cur_p_frac = np.sqrt(pQ**2 + pU**2)

        # Make dummy Stokes vector so can reuse the optimised rotImPolz
        curIm = np.zeros((imSz, imSz, 4))
        curIm[:, :, 1] = pQ
        curIm[:, :, 2] = pU

        curIm = plz.rotImPolz(curIm, pasPerInd[count])
    except:
        print "Error caught!"
    else:
        allpQIms.append(curIm[:, :, 1])
        allpUIms.append(curIm[:, :, 2])
    print count

#summedpQIms = np.asarray
summedpQ = np.asarray(allpQIms).mean(axis=0)
summedpU = np.asarray(allpUIms).mean(axis=0)
summed_p = np.sqrt(summedpQ**2 + summedpU**2)

#fits.writeto('testorder_normal.fits',summed_p)
plt.imshow(summed_p)
plt.pause(0.001)
コード例 #5
0
infile = 'toyDisk.fits'

hdulist = fits.open(infile)
curHDU = hdulist[0]
inIm = np.transpose(curHDU.data, (1, 2, 0))
inIm = inIm.astype('f8')

# t = cl()
# allIms = plz.StokesToPol(inIm)
# print cl()-t

# Try rotating polz of images...
paRange = np.arange(-45, 45, 10)
allRotatedImages = []
allRotatedPolIms = []
imsz = inIm.shape[0]

for angle in paRange:
    print "Doing angle %f" % angle
    curIm = plz.rotImPolz(inIm, angle)
    allRotatedImages.append(curIm)

    curPolIm = plz.stokesToPol(curIm)
    allRotatedPolIms.append(curPolIm)

    #plt.imshow(curIm[:,:,1])
    plt.imshow(curPolIm[0])
    plt.pause(0.001)

print 'Done.'