コード例 #1
0
def testClassifier(classifierFilename, case):
    assert case=="lena" or case=="car" , "case parameter should be lena or car"
    
    superPixelClassifier = pomio.unpickleObject(classifierFilename)
    print "\n*Loaded classifier [ " , type(superPixelClassifier) , "] from:" , classifierFilename
    
    image = None
    orientation = None
    
    if case == "car":
        print "*Loading MSRC car image::"
        image = pomio.msrc_loadImages("/home/amb/dev/mrf/data/MSRC_ObjCategImageDatabase_v2", ['Images/7_3_s.bmp'] )[0].m_img
        orientation = "lower"

    elif case == "lena":
        print "*Loading Lena.jpg"
        image = skimage.data.lena()
        orientation = "upper"
    
    print "*Predicting superpixel labels in image::"
    numberSuperPixels = 400
    superPixelCompactness = 10
    [superPixelLabels, superPixelsMask] = predictSuperPixelLabels(superPixelClassifier, image,numberSuperPixels, superPixelCompactness)
    
    carSuperPixelLabels = getSuperPixelLabelledImage(image, superPixelsMask, superPixelLabels)
    
    plotSuperPixelImage(image, carSuperPixelLabels, orientation)
コード例 #2
0
def test():
    # TODO use reference classifier
    classifierName = "/home/amb/dev/mrf/classifiers/randomForest/superpixel/randyForest_superPixel_maxDepth15_0.6Data.pkl"
    classifier = pomio.unpickleObject(classifierName)
    carFile = "7_3_s.bmp"
    msrcData = "/home/amb/dev/mrf/data/MSRC_ObjCategImageDatabase_v2"

    car = pomio.msrc_loadImages(msrcData, ["Images/" + carFile])[0]
    groundTruth = car.m_gt

    mask = SuperPixels.getSuperPixels_SLIC(car.m_img, 400, 10)

    spLabels = SuperPixelClassifier.predictSuperPixelLabels(
        classifier, car.m_img, 400, 10)[0]

    prediction = SuperPixelClassifier.getSuperPixelLabelledImage(
        car.m_img, mask, spLabels)

    # save prediction to file
    pomio.writeMatToCSV(
        prediction, "/home/amb/dev/eval/test/predict/testPrediction1.labels")

    results = evaluatePrediction(prediction, groundTruth)

    print "\nINFO: Car test eval results::\n\t", results
コード例 #3
0
def loadReferenceGroundTruthLabels(sourceData, imgName):
    gtFile = str(sourceData) + "/GroundTruth/" + str(imgName)
    if "_GT" in imgName:
        imgName = imgName.replace("_GT" , "")

    gtImgLabels = pomio.msrc_loadImages(sourceData , ["Images/" + imgName] )[0].m_gt
    return gtImgLabels
コード例 #4
0
def getSuperPixelTrainingData(msrcDataDirectory,
                              nbSuperPixels,
                              superPixelCompactness,
                              scale,
                              trainSplit=0.6,
                              validationSplit=0.2,
                              testSplit=0.2):

    # Should probably make this a call to pomio in case the ordering changes in the future...
    voidClassLabel = pomio.getVoidIdx()

    # These could be user-specified
    if scale == None:
        scale = 0.05  # default to 10% of data

    msrcData = pomio.msrc_loadImages(msrcDataDirectory, None)

    print "Now generating superpixel classifier for MSRC data"

    #    splitData = pomio.splitInputDataset_msrcData(msrcData, datasetScale=scale, keepClassDistForTraining=True, trainSplit, validationSplit, testSplit )
    splitData = pomio.splitInputDataset_msrcData(msrcData, scale, True,
                                                 trainSplit, validationSplit,
                                                 testSplit)

    # prepare superpixel training data
    trainingMsrcImages = splitData[0]

    # Just use the above function to get superpixel features and labels for training data
    return SuperPixelClassifier.getSuperPixelData(trainingMsrcImages,
                                                  nbSuperPixels,
                                                  superPixelCompactness)
コード例 #5
0
def testClassifier(classifierFilename, case):
    assert case == "lena" or case == "car", "case parameter should be lena or car"

    superPixelClassifier = pomio.unpickleObject(classifierFilename)
    print "\n*Loaded classifier [ ", type(
        superPixelClassifier), "] from:", classifierFilename

    image = None
    orientation = None

    if case == "car":
        print "*Loading MSRC car image::"
        image = pomio.msrc_loadImages(
            "/home/amb/dev/mrf/data/MSRC_ObjCategImageDatabase_v2",
            ['Images/7_3_s.bmp'])[0].m_img
        orientation = "lower"

    elif case == "lena":
        print "*Loading Lena.jpg"
        image = skimage.data.lena()
        orientation = "upper"

    print "*Predicting superpixel labels in image::"
    numberSuperPixels = 400
    superPixelCompactness = 10
    [superPixelLabels,
     superPixelsMask] = predictSuperPixelLabels(superPixelClassifier, image,
                                                numberSuperPixels,
                                                superPixelCompactness)

    carSuperPixelLabels = getSuperPixelLabelledImage(image, superPixelsMask,
                                                     superPixelLabels)

    plotSuperPixelImage(image, carSuperPixelLabels, orientation)
コード例 #6
0
def test():

    classifierLocation = "/home/amb/dev/mrf/classifiers/logisticRegression/superpixel/logReg_miniMSRC.pkl"

    classifier = pomio.unpickleObject(classifierLocation)
    carFile = "7_3_s.bmp"
    msrcData = "/home/amb/dev/mrf/data/MSRC_ObjCategImageDatabase_v2"

    car = pomio.msrc_loadImages(msrcData, ["Images/" + carFile])[0]
    groundTruth = car.m_gt

    mask = superPixels.getSuperPixels_SLIC(car.m_img, 400, 10)

    spLabels = SuperPixelClassifier.predictSuperPixelLabels(
        classifier, car.m_img, 400, 10, True)[0]

    prediction = SuperPixelClassifier.getSuperPixelLabelledImage(
        car.m_img, mask, spLabels)

    # save prediction to file
    pomio.writeMatToCSV(prediction,
                        "/home/amb/dev/mrf/eval/testPrediction1.labels")

    results = evaluatePrediction(prediction, groundTruth, carFile)
    print "\nINFO: Car test eval results::\n\t", results

    classResults = evaluateClassPerformance(prediction, groundTruth)
    print "\nINFO: Car test eval class results::\n\t", classResults

    confusionResults = evaluateConfusionMatrix(prediction, groundTruth)
    print "\nINFO: Car test eval confusion matrix results::\n\t", "Just sum up entries... ", np.sum(
        confusionResults)
コード例 #7
0
def loadReferenceGroundTruthLabels(sourceData, imgName):
    gtFile = str(sourceData) + "/GroundTruth/" + str(imgName)
    if "_GT" in imgName:
        imgName = imgName.replace("_GT", "")

    gtImgLabels = pomio.msrc_loadImages(sourceData,
                                        ["Images/" + imgName])[0].m_gt
    return gtImgLabels
コード例 #8
0
def neighbourClassImageCount(msrcDataLocation, outputFileLocation):
    # for each non-matching class pair, count images where they are neighbours
    classes = pomio.msrc_classLabels
    totalClasses = np.size(classes)
    
    msrcImages = pomio.msrc_loadImages(msrcDataLocation)
    print "*Imported MSRC image data using pomio.py::" , np.shape(msrcImages)
    
#     numberOfPairs = factorial(totalClasses) / (factorial(totalClasses -2) * factorial(2))
    
    result = None
    
    for startClassIdx in range(0, totalClasses):
        
        for endClassIdx in range(0, totalClasses):
            
            if (not startClassIdx == endClassIdx) and (endClassIdx > startClassIdx):
                # we have a class pair
                startClassValue = classes[startClassIdx]
                endClassValue = classes[endClassIdx]
                
                neighbourCount = 0
                
                # loop over images, increase count when an image includes startClass-endClass neighbours
                for imageIdx in range(0,np.size(msrcImages)):
                    
                    imageGroundTruth = msrcImages[imageIdx].m_gt
                    
                    # Get binary representation of image for each class
                    startClassChannel = (imageGroundTruth == startClassIdx)
                    startClassChannel = startClassChannel.astype('int')
                    
                    endClassChannel = (imageGroundTruth == endClassIdx)
                    endClassChannel= endClassChannel.astype('int')
                    
                    # get the difference (do not expect pixel to be in both classes!)
                    classDifference = startClassChannel - endClassChannel
                    
                    # get x and y gradient
                    dx_classDiff, dy_classDiff = np.gradient(classDifference)
                     
                    # if absolute value of x or y gradient = 2, neighbour pixels 
                    if(np.any(dx_classDiff == 2) or (np.any(dy_classDiff == 2))):
                        neighbourCount = neighbourCount + 1
                    
                print "Pair:[" + str(startClassValue) + ", " + str(endClassValue) +"] count = " + str(neighbourCount)
                    
                if result == None:
                    result = np.array([ startClassValue, endClassValue, neighbourCount])
                else:
                    result = np.vstack([ result, [ startClassValue, endClassValue, str(neighbourCount)] ] )
                        
    print "Shape of result data::", np.shape(result)
    print "Class pair image count result::",  result
    np.savetxt(outputFileLocation, result, delimiter=",", fmt="%.32f")
コード例 #9
0
def areAllMsrcGroundTruthImagesTheSameSize(msrcDataLocation):
    msrcImages = pomio.msrc_loadImages(msrcDataLocation)
    size = int(msrcImages[0].m_gt.size)
    
    equalSize = True
    
    for imageIdx in range(1, np.size(msrcImages)):
        imageSize = int(msrcImages[imageIdx].m_gt.size)
        if not size == imageSize:
            equalSize = False
            print "Image#" + str(imageIdx+1) + " doesn't match first size (" + str(size) + "), imageSize=" + str(imageSize)
    
    return equalSize
コード例 #10
0
def areAllMsrcGroundTruthImagesTheSameSize(msrcDataLocation):
    msrcImages = pomio.msrc_loadImages(msrcDataLocation)
    size = int(msrcImages[0].m_gt.size)

    equalSize = True

    for imageIdx in range(1, np.size(msrcImages)):
        imageSize = int(msrcImages[imageIdx].m_gt.size)
        if not size == imageSize:
            equalSize = False
            print "Image#" + str(imageIdx +
                                 1) + " doesn't match first size (" + str(
                                     size) + "), imageSize=" + str(imageSize)

    return equalSize
コード例 #11
0
def getUniqueImageSizes(msrcDataLocation):
    msrcImages = pomio.msrc_loadImages(msrcDataLocation)
    uniqueImageSizes = np.array([])
    firstSize = msrcImages[0].m_gt.size

    uniqueImageSizes = np.append(uniqueImageSizes, firstSize)

    for imageIdx in range(1, np.size(msrcImages)):

        imageSize = msrcImages[imageIdx].m_gt.size

        if not imageSize in uniqueImageSizes:
            uniqueImageSizes = np.append([uniqueImageSizes], imageSize)

    return uniqueImageSizes
コード例 #12
0
def getUniqueImageSizes(msrcDataLocation):
    msrcImages = pomio.msrc_loadImages(msrcDataLocation)
    uniqueImageSizes = np.array([])
    firstSize = msrcImages[0].m_gt.size
    
    
    uniqueImageSizes = np.append(uniqueImageSizes, firstSize)
    
    for imageIdx in range(1, np.size(msrcImages)):
        
        imageSize = msrcImages[imageIdx].m_gt.size
        
        if not imageSize in uniqueImageSizes:
            uniqueImageSizes = np.append([uniqueImageSizes] , imageSize)
    
    return uniqueImageSizes
コード例 #13
0
def getSuperPixelTrainingData(msrcDataDirectory, nbSuperPixels,superPixelCompactness, scale, trainSplit=0.6, validationSplit=0.2, testSplit=0.2):
    
    # Should probably make this a call to pomio in case the ordering changes in the future...
    voidClassLabel = pomio.getVoidIdx()
    
    # These could be user-specified
    if scale == None:
        scale = 0.05 # default to 10% of data
        
    msrcData = pomio.msrc_loadImages(msrcDataDirectory, None)

    print "Now generating superpixel classifier for MSRC data"
    
#    splitData = pomio.splitInputDataset_msrcData(msrcData, datasetScale=scale, keepClassDistForTraining=True, trainSplit, validationSplit, testSplit )
    splitData = pomio.splitInputDataset_msrcData(msrcData, scale, True, trainSplit, validationSplit, testSplit )
    
    # prepare superpixel training data
    trainingMsrcImages = splitData[0]
    
    # Just use the above function to get superpixel features and labels for training data
    return SuperPixelClassifier.getSuperPixelData(trainingMsrcImages,nbSuperPixels,superPixelCompactness)
コード例 #14
0
def test():
    # TODO use reference classifier
    classifierName = "/home/amb/dev/mrf/classifiers/randomForest/superpixel/randyForest_superPixel_maxDepth15_0.6Data.pkl"
    classifier = pomio.unpickleObject(classifierName)
    carFile = "7_3_s.bmp"
    msrcData = "/home/amb/dev/mrf/data/MSRC_ObjCategImageDatabase_v2"

    car = pomio.msrc_loadImages(msrcData , [ "Images/" + carFile ] )[0]
    groundTruth = car.m_gt
    
    mask = SuperPixels.getSuperPixels_SLIC(car.m_img, 400, 10)
    
    spLabels = SuperPixelClassifier.predictSuperPixelLabels(classifier, car.m_img,400,10)[0]
    
    prediction = SuperPixelClassifier.getSuperPixelLabelledImage(car.m_img, mask, spLabels)
    
    # save prediction to file
    pomio.writeMatToCSV(prediction, "/home/amb/dev/eval/test/predict/testPrediction1.labels")
    
    results = evaluatePrediction(prediction, groundTruth)
    
    print "\nINFO: Car test eval results::\n\t" , results
コード例 #15
0
def imageCountPerClass(msrcDataLocation):

    classes = pomio.msrc_classLabels
    totalClasses = np.size(classes)

    classImageCount = np.arange(0, totalClasses)

    msrcImages = pomio.msrc_loadImages(msrcDataLocation)

    print "\t*Imported MSRC image data using pomio.py::", np.shape(msrcImages)

    for classIdx in range(0, totalClasses):

        classValue = classes[classIdx]

        imageCountForClass = 0

        for imageIdx in range(0, np.size(msrcImages)):

            image = msrcImages[imageIdx]
            imageGroundTruth = image.m_gt

            if classIdx in imageGroundTruth:

                imageCountForClass = imageCountForClass + 1

        # add total count to the class count result
        print "Class = " + str(classValue), ", image count=" + str(
            imageCountForClass)

        classImageCount[classIdx] = int(imageCountForClass)

    result = np.array([classes, classImageCount])

    print "Image count per class::\n", result

    return result
コード例 #16
0
def imageCountPerClass(msrcDataLocation):
    
    classes = pomio.msrc_classLabels
    totalClasses = np.size(classes)
    
    classImageCount = np.arange(0,totalClasses)
    
    msrcImages = pomio.msrc_loadImages(msrcDataLocation)
    
    print "\t*Imported MSRC image data using pomio.py::" , np.shape(msrcImages)
    
    for classIdx in range(0,totalClasses):
        
        classValue = classes[classIdx]
        
        imageCountForClass = 0;
        
        for imageIdx in range(0,np.size(msrcImages)):
            
            image = msrcImages[imageIdx]
            imageGroundTruth = image.m_gt
            
            if classIdx in imageGroundTruth:
                
                imageCountForClass = imageCountForClass + 1
            
        # add total count to the class count result
        print "Class = " + str(classValue), ", image count=" + str(imageCountForClass)
        
        classImageCount[classIdx] = int(imageCountForClass)
    
    result = np.array([classes, classImageCount])
    
    print "Image count per class::\n" , result
    
    return result
コード例 #17
0
 msrcImages = pomio.msrc_loadImages(msrcData, [\
         'Images/10_1_s.bmp',\
         'Images/10_2_s.bmp',\
         'Images/11_1_s.bmp',\
         'Images/11_2_s.bmp',\
         'Images/12_1_s.bmp',\
         'Images/12_2_s.bmp',\
         'Images/13_1_s.bmp',\
         'Images/13_2_s.bmp',\
         'Images/14_1_s.bmp',\
         'Images/14_2_s.bmp',\
         'Images/15_1_s.bmp',\
         'Images/15_2_s.bmp',\
         'Images/16_1_s.bmp',\
         'Images/16_2_s.bmp',\
         'Images/17_1_s.bmp',\
         'Images/17_2_s.bmp',\
         'Images/18_1_s.bmp',\
         'Images/18_2_s.bmp',\
         'Images/19_1_s.bmp',\
         'Images/19_2_s.bmp',\
         'Images/1_1_s.bmp',\
         'Images/1_2_s.bmp',\
         'Images/20_1_s.bmp',\
         'Images/20_2_s.bmp',\
         'Images/2_1_s.bmp',\
         'Images/2_2_s.bmp',\
         'Images/3_1_s.bmp',\
         'Images/3_2_s.bmp',\
         'Images/4_1_s.bmp',\
         'Images/4_2_s.bmp',\
         'Images/5_1_s.bmp',\
         'Images/5_2_s.bmp',\
         'Images/6_1_s.bmp',\
         'Images/6_2_s.bmp',\
         'Images/7_1_s.bmp',\
         'Images/7_2_s.bmp',\
         'Images/8_1_s.bmp',\
         'Images/8_2_s.bmp',\
         'Images/9_1_s.bmp',\
         'Images/9_2_s.bmp'])
コード例 #18
0

if __name__ == "__main__":

    # Create network
    print "*Creating neural net"
    net = createDefaultNeuralNet()

    msrcData = "/home/amb/dev/mrf/data/MSRC_ObjCategImageDatabase_v2"

    print "\n*Creating training dataset"
    labeledData = createTrainingSupervisedDataSet(msrcData, 0.05, True)

    print "\n*Training network via backpropogation"
    trainingResult = trainNetworkBackprop(net, labeledData)

    net = trainingResult[0]
    trainer = trainingResult[1]

    predictImage = pomio.msrc_loadImages(msrcData)[1]

    print "\n*Read in an image from the MSRC dataset::", np.shape(
        predictImage.m_img)
    # todo: replace with features.computePixelFeatures JRS
    imageFeatures = FeatureGenerator.generatePixelFeaturesForImage(
        predictImage.m_img)

    print "\n*Using neural net to predict class label::"
    prediction = predictClass(imageFeatures, net)
    print prediction
コード例 #19
0
ファイル: testPomio.py プロジェクト: dksr/alienMarkovNetworks
#!/usr/bin/env python
import sys
import matplotlib.pyplot as plt

# Give it the path to the data set as an arg
import pomio

X = pomio.msrc_loadImages(sys.argv[1])
print X

# Display the images
plt.ion()
for img in X:
    plt.figure(1)
    plt.imshow(img.m_img)
    plt.title("Image %s" % img.m_imgFn)
    plt.figure(2)
    plt.imshow(img.m_gt)
    plt.title("labels")
    plt.draw()
    plt.pause(0.2)

# plt.ioff()
# plt.show()
コード例 #20
0
def neighbourClassImageCount(msrcDataLocation, outputFileLocation):
    # for each non-matching class pair, count images where they are neighbours
    classes = pomio.msrc_classLabels
    totalClasses = np.size(classes)

    msrcImages = pomio.msrc_loadImages(msrcDataLocation)
    print "*Imported MSRC image data using pomio.py::", np.shape(msrcImages)

    #     numberOfPairs = factorial(totalClasses) / (factorial(totalClasses -2) * factorial(2))

    result = None

    for startClassIdx in range(0, totalClasses):

        for endClassIdx in range(0, totalClasses):

            if (not startClassIdx
                    == endClassIdx) and (endClassIdx > startClassIdx):
                # we have a class pair
                startClassValue = classes[startClassIdx]
                endClassValue = classes[endClassIdx]

                neighbourCount = 0

                # loop over images, increase count when an image includes startClass-endClass neighbours
                for imageIdx in range(0, np.size(msrcImages)):

                    imageGroundTruth = msrcImages[imageIdx].m_gt

                    # Get binary representation of image for each class
                    startClassChannel = (imageGroundTruth == startClassIdx)
                    startClassChannel = startClassChannel.astype('int')

                    endClassChannel = (imageGroundTruth == endClassIdx)
                    endClassChannel = endClassChannel.astype('int')

                    # get the difference (do not expect pixel to be in both classes!)
                    classDifference = startClassChannel - endClassChannel

                    # get x and y gradient
                    dx_classDiff, dy_classDiff = np.gradient(classDifference)

                    # if absolute value of x or y gradient = 2, neighbour pixels
                    if (np.any(dx_classDiff == 2)
                            or (np.any(dy_classDiff == 2))):
                        neighbourCount = neighbourCount + 1

                print "Pair:[" + str(startClassValue) + ", " + str(
                    endClassValue) + "] count = " + str(neighbourCount)

                if result == None:
                    result = np.array(
                        [startClassValue, endClassValue, neighbourCount])
                else:
                    result = np.vstack([
                        result,
                        [startClassValue, endClassValue,
                         str(neighbourCount)]
                    ])

    print "Shape of result data::", np.shape(result)
    print "Class pair image count result::", result
    np.savetxt(outputFileLocation, result, delimiter=",", fmt="%.32f")
コード例 #21
0
#!/usr/bin/env python

import sys
import pomio
import amntools
import matplotlib.pyplot as plt
import numpy as np
import FeatureGenerator
import matplotlib

# Load all data
print 'Loading all data...'
# first arg should be msrc data path
data = pomio.msrc_loadImages( sys.argv[1], ['Images/7_3_s.bmp'])
# get particular image we like
ex = data[0]


plt.figure()
plt.imshow(ex.m_img)
plt.title('original image')

plt.figure()
clrs = [[z/255.0 for z in c[1]] for c in pomio.msrc_classToRGB]
pomio.showLabels( ex.m_gt )
plt.title('ground truth labels' )

print 'unique class labels: ', np.unique(ex.m_gt)

# generate features
imagePixelFeatures = FeatureGenerator.generatePixelFeaturesForImage(ex.m_img)
コード例 #22
0
    



if __name__ == "__main__":
    
    # Create network
    print "*Creating neural net"
    net = createDefaultNeuralNet()
    
    msrcData = "/home/amb/dev/mrf/data/MSRC_ObjCategImageDatabase_v2"
    
    print "\n*Creating training dataset"
    labeledData = createTrainingSupervisedDataSet(msrcData, 0.05, True) 
    
    print "\n*Training network via backpropogation"
    trainingResult = trainNetworkBackprop(net, labeledData)
    
    net = trainingResult[0]
    trainer = trainingResult[1]
    
    predictImage = pomio.msrc_loadImages(msrcData)[1]
    
    print "\n*Read in an image from the MSRC dataset::" , np.shape(predictImage.m_img)
    imageFeatures = FeatureGenerator.generatePixelFeaturesForImage(predictImage.m_img)
    
    print "\n*Using neural net to predict class label::"
    prediction = predictClass(imageFeatures, net)
    print prediction
    
コード例 #23
0
#!/usr/bin/env python
import sys
import matplotlib.pyplot as plt
# Give it the path to the data set as an arg
import pomio

X = pomio.msrc_loadImages( sys.argv[1] )
print X

# Display the images
plt.ion()
for img in X:
    plt.figure(1)
    plt.imshow( img.m_img )
    plt.title('Image %s' % img.m_imgFn)
    plt.figure(2)
    plt.imshow( img.m_gt )
    plt.title('labels')
    plt.draw()
    plt.pause(0.2)

#plt.ioff()
#plt.show()
コード例 #24
0
if (trainSplit == 1.0) and (cvSplit == 0.0 and testSplit == 0.0):
    writeDataType = False
else:
    # we get here if we have non-default splits
    writeDataType = True

# Do the expected thing if we have a non-default split
if args.v:
    print "Loading data"

if writeDataType == True:
    # Get train, test and cv datasets
    print "\nSplitting data into sets: train =", trainSplit, "test =", testSplit, "cvSplit =", cvSplit
    keepClassDistForTraining = False  #!!
    [trainData, cvData, testData] = pomio.splitInputDataset_msrcData(
        pomio.msrc_loadImages(msrcDataDirectory, subset=None),
        scaleFrac,
        keepClassDistForTraining,
        trainSplit,
        cvSplit,
        testSplit,
    )

    assert trainData != None, "Training data object is null"
    assert len(trainData) > 0, "Training data contains no data"

    if testData == None or len(testData) == 0:
        print "WARNING: Testing data contains no data"

    print "Creating training set from %d images, and test set from %d images" % (len(trainData), len(testData))
コード例 #25
0
if (trainSplit == 1.0) and (cvSplit == 0.0 and testSplit == 0.0):
    writeDataType = False
else:
    # we get here if we have non-default splits
    writeDataType = True

# Do the expected thing if we have a non-default split
if args.v:
    print 'Loading data'

if writeDataType == True:
    # Get train, test and cv datasets
    print "\nSplitting data into sets: train =", trainSplit, "test =", testSplit, "cvSplit =", cvSplit
    keepClassDistForTraining = False  #!!
    [trainData, cvData, testData] = pomio.splitInputDataset_msrcData(\
        pomio.msrc_loadImages(msrcDataDirectory, subset=None),
        scaleFrac, keepClassDistForTraining, trainSplit , cvSplit , testSplit)

    assert trainData != None, "Training data object is null"
    assert len(trainData) > 0, "Training data contains no data"

    if testData == None or len(testData) == 0:
        print 'WARNING: Testing data contains no data'

    print "Creating training set from %d images, and test set from %d images" % (
        len(trainData), len(testData))

    # Process and persist feature and labels for superpixels in image dataset
    print "Create & save training feature and label superpixel data"
    createAndSaveFeatureLabelData(trainData, outfileBase, "train", outfileType,
                                  numberSuperPixels, superPixelCompactness,
コード例 #26
0
 msrcImages = pomio.msrc_loadImages(msrcData, [\
         'Images/10_1_s.bmp',\
         'Images/10_2_s.bmp',\
         'Images/11_1_s.bmp',\
         'Images/11_2_s.bmp',\
         'Images/12_1_s.bmp',\
         'Images/12_2_s.bmp',\
         'Images/13_1_s.bmp',\
         'Images/13_2_s.bmp',\
         'Images/14_1_s.bmp',\
         'Images/14_2_s.bmp',\
         'Images/15_1_s.bmp',\
         'Images/15_2_s.bmp',\
         'Images/16_1_s.bmp',\
         'Images/16_2_s.bmp',\
         'Images/17_1_s.bmp',\
         'Images/17_2_s.bmp',\
         'Images/18_1_s.bmp',\
         'Images/18_2_s.bmp',\
         'Images/19_1_s.bmp',\
         'Images/19_2_s.bmp',\
         'Images/1_1_s.bmp',\
         'Images/1_2_s.bmp',\
         'Images/20_1_s.bmp',\
         'Images/20_2_s.bmp',\
         'Images/2_1_s.bmp',\
         'Images/2_2_s.bmp',\
         'Images/3_1_s.bmp',\
         'Images/3_2_s.bmp',\
         'Images/4_1_s.bmp',\
         'Images/4_2_s.bmp',\
         'Images/5_1_s.bmp',\
         'Images/5_2_s.bmp',\
         'Images/6_1_s.bmp',\
         'Images/6_2_s.bmp',\
         'Images/7_1_s.bmp',\
         'Images/7_2_s.bmp',\
         'Images/8_1_s.bmp',\
         'Images/8_2_s.bmp',\
         'Images/9_1_s.bmp',\
         'Images/9_2_s.bmp'])
コード例 #27
0
#!/usr/bin/env python

import pomio
import amntools
import matplotlib.pyplot as plt
import numpy as np
from scipy.misc import imread
import FeatureGenerator
import matplotlib

# Load all data
print 'Loading all data...'
data = pomio.msrc_loadImages('/home/jamie/data/MSRC_ObjCategImageDatabase_v2', \
                                 ['Images/7_3_s.bmp'])
# get particular image we like
ex = data[0]

plt.figure()
plt.imshow(ex.m_img)
plt.title('original image')

plt.figure()
clrs = [[z / 255.0 for z in c[1]] for c in pomio.msrc_classToRGB]
pomio.showLabels(ex.m_gt)
plt.title('ground truth labels')

print 'unique class labels: ', np.unique(ex.m_gt)

# generate features
imagePixelFeatures = FeatureGenerator.generatePixelFeaturesForImage(ex.m_img)
# For each feature, how many distinct values?