'Unknown classifier type ' + clfrType # Check can write these files. if outfile != None: f = open(outfile, 'w') f.close() clfr = None labs = None ftrs = None # Load the features and labels if infileFtrs.endswith('.pkl'): ftrs = pomio.unpickleObject(infileFtrs) else: ftrs = pomio.readMatFromCSV(infileFtrs) D = ftrs.shape[1] print 'Feature dimensionality = ', D if infileLabs.endswith('.pkl'): labs = pomio.unpickleObject(infileLabs) else: labs = pomio.readMatFromCSV(infileLabs).astype(np.int32) n = len(labs) assert n == ftrs.shape[0], 'Error: there are %d labels and %d training examples' \ % ( n, ftrs.shape[0] ) assert np.all(np.isfinite(ftrs)) print 'There are %d unique labels in range [%d,%d]' % (len(
parser.add_argument('--nstart', type=int, default=0,\ help='Index of feature to start at') args = parser.parse_args() import amntools import matplotlib.pyplot as plt import pomio plt.interactive(1) # Load the features and labels if args.ftrs.endswith('.pkl'): ftrs = pomio.unpickleObject( args.ftrs ) else: ftrs = pomio.readMatFromCSV( args.ftrs ) N = ftrs.shape[0] D = ftrs.shape[1] print '%d feature vectors of dimensionality = %d' % (N,D) if args.labs == None: labs = None else: if args.labs.endswith('.pkl'): labs = pomio.unpickleObject( args.labs ) else: labs = pomio.readMatFromCSV( args.labs ).astype(np.int32) # show labels if labs != None:
# Check can write these files. if outfile != None: f=open(outfile,'w') f.close() clfr = None labs = None ftrs = None # Load the features and labels if infileFtrs.endswith('.pkl'): ftrs = pomio.unpickleObject( infileFtrs ) else: ftrs = pomio.readMatFromCSV( infileFtrs ) D = ftrs.shape[1] print 'Feature dimensionality = ', D if infileLabs.endswith('.pkl'): labs = pomio.unpickleObject( infileLabs ) else: labs = pomio.readMatFromCSV( infileLabs ).astype(np.int32) n = len(labs) assert n == ftrs.shape[0], 'Error: there are %d labels and %d training examples' \ % ( n, ftrs.shape[0] ) assert np.all( np.isfinite( ftrs ) ) print 'There are %d unique labels in range [%d,%d]' % ( len(np.unique(labs)), np.min(labs), np.max(labs) )
parser.add_argument('--nstart', type=int, default=0,\ help='Index of feature to start at') args = parser.parse_args() import amntools import matplotlib.pyplot as plt import pomio plt.interactive(1) # Load the features and labels if args.ftrs.endswith('.pkl'): ftrs = pomio.unpickleObject(args.ftrs) else: ftrs = pomio.readMatFromCSV(args.ftrs) N = ftrs.shape[0] D = ftrs.shape[1] print '%d feature vectors of dimensionality = %d' % (N, D) if args.labs == None: labs = None else: if args.labs.endswith('.pkl'): labs = pomio.unpickleObject(args.labs) else: labs = pomio.readMatFromCSV(args.labs).astype(np.int32) # show labels if labs != None: plt.figure()