コード例 #1
0
ファイル: afpo5t.py プロジェクト: akloumann/Bot
    def afpo(self):
        envs = ENVIRONMENTS()
        print('envs to run:', c.envsToRun, '   pop init:',
              c.num_rand_phc + len(self.fit_ids))
        parents = POPULATION(c.num_rand_phc + len(self.fit_ids))
        parents.InitializeRandomPop()

        # parents = self.phc_ga(parents, envs, c.afpo2_phc_gens)
        # print('\n############# phc done #############\n')

        parents.Evaluate(envs, False, True)

        for i in range(0, len(parents.p)):
            parents.p[i].age += i
        # for i in range(0, len(parents.p)):
        #     print('p[' + str(i) + '].age =', parents.p[i].age)
        print("Initial population age adjusted")
        parents.Print()

        finalpop = self.af_pareto_ga(parents, envs)

        frontinds = self.af_pareto_math(finalpop.GetAges(), finalpop.GetFits())
        finalpopfront = POPULATION(len(frontinds))
        for i in range(0, len(frontinds)):
            finalpopfront.p[i] = finalpop.p[frontinds[i]]
        finalpopfront.Pickling618()
        self.ShowEvaluatePop(finalpopfront, envs, pp=True, pb=False)
コード例 #2
0
ファイル: afpo2.py プロジェクト: akloumann/Bot
    def main(self):
        t_end = time.time() + 60 * c.minutes
        envs = ENVIRONMENTS()
        print('envs to run:', c.envsToRun, '   initial popsize:', c.num_rand_phc)
        parents = POPULATION(c.num_rand_phc + len(self.fit_ids))
        parents.InitializeRandomPop()
        parents.Evaluate(envs, pp=False, pb=True)
        parents.Print()

        if c.alg == 'afpo2':
            self.afpo()
        elif c.alg == 'garef':
            parents = self.garef(c.numGensDivPop, envs, parents, t_end)

        self.ShowEvaluatePop(parents, envs)
コード例 #3
0
ファイル: afpo3.py プロジェクト: akloumann/Bot
    def af_pareto_spop(self, front, envs):
        target_popsize = 20
        pcc = POPULATION(target_popsize)

        single = POPULATION(1)
        single.InitializeRandomPop()
        single.Evaluate(envs, False, True)

        num_remain = target_popsize - (len(front.p) + 1)
        if num_remain > 0:
            pccr = POPULATION(num_remain)
            for i in range(0, num_remain):
                pccr.p[i] = copy.deepcopy(pcc.p[i % len(front.p)])
            pccr.Mutate()
            pccr.Evaluate()

        for i in range(0, target_popsize):
            if i == 0:
                pcc.p[i] = single.p[0]
            elif i < len(front.p) + 1:
                pcc.p[i] = front.p[i - 1]
            else:
                pcc.p[i] = pccr[i - (len(front) + 1)]

        ages = pcc.GetAges()
        fits = pcc.GetFits()
        print('fits', fits, '  ages', ages)

        fits_inv = []
        for i in range(0, len(fits)):
            if fits[i] != 0:
                fits_inv.append(fits[i]**-1)
            else:
                fits_inv.append(10**6)

        dominant_inds = np.array(self.af_pareto_math(ages, fits_inv))
        new_pop = POPULATION(len(dominant_inds))
        for i in range(0, target_popsize):
            dominant_inds_index = i % len(dominant_inds)
            new_pop.p[i] = copy.deepcopy(pcc.p[dominant_inds_index])
            if i >= len(dominant_inds):
                new_pop.p[i].Mutate()

        del pcc
        new_pop.Print()
        return new_pop
コード例 #4
0
ファイル: garef.py プロジェクト: akloumann/Bot
    if k < num_rand:
        first = np.random.random_sample((c.numInputs, c.numHidden)) * 2 - 1
        second = np.random.random_sample((c.numHidden, c.numOutputs)) * 2 - 1
        genome = [first, second]
    else:
        filename = 'genome' + str(fit_labels[0])
        del fit_labels[0]
        pathLoad = c.pathLoad
        filename = pathLoad + filename
        g = open(filename, 'r')
        genome = pickle.load(g)
        g.close()
    # parents.InitializeUniformPop(genome)
    parents.p[k] = INDIVIDUAL(k, genome, 0)
    parents.Evaluate(envs, pp=False, pb=True)
    parents.Print()
    for i in range(0, c.numGensDivPop):
        # the POPULATION constructor creates an empty dictionary and stores the variable popSize
        children = POPULATION(c.popSize)
        # children.Print('bm')
        print()
        children.FillFrom(parents)

        print('seconds remaining', t_end - time.time())

        # print('\n0', end=' ')
        parents.Print()
        children.Evaluate(envs, pp=False, pb=True)
        # print(i, end=' ')
        children.Print(i)
        children.PrintDists(i)
コード例 #5
0
pathLoad = c.pathLoad
filename = pathLoad + filename
g = open(filename, 'r')
genome = pickle.load(g)
g.close()

# first = np.random.random_sample((c.numInputs, c.numHidden)) * 2 - 1
# second = np.random.random_sample((c.numHidden, c.numOutputs)) * 2 - 1
# genome = [first, second]

envs = ENVIRONMENTS()
parents = POPULATION(1, -1)

parents.InitializeUniformPop(genome)
parents.Evaluate(envs, pp=False, pb=True)
parents.Print()

# # i = 0
# # t_end = time.time() + 60 * c.minutes
# for i in range(0, 1):
# # while time.time() < t_end:
#     # the POPULATION constructor creates an empty dictionary and stores the variable popSize
#     children = POPULATION(c.popSizeGA1, i)
#     children.Print()
#     children.FillFrom(parents)
#
#     # print('seconds remaining', t_end - time.time())
#
#     print('\n0', end=' ')
#     parents.Print()
#     children.Evaluate(envs, pp=False, pb=True)
コード例 #6
0
from pop import POPULATION
from afpo5t2 import GENETIC_ALGORITHM
import const as c
import time
import pyrosim
import matplotlib.pyplot as plt
import numpy as np
import random
import copy
import pickle
import os

alg = GENETIC_ALGORITHM()

mode = 't'
mode = 'r'
if mode == 't':
    envs = ENVIRONMENTS()
    pop = POPULATION(10)
    pop.InitializeRandomPop()
    pop.Evaluate(envs, False, True)
    for i in range(0, len(pop.p)):
        pop.p[i].age += i

    pop.Print()

    frontpop = alg.gen_par_front_pop(pop, envs)
    frontpop.Print()
else:
    # alg.main()
    alg.combo_simple_phc_ga()
コード例 #7
0
ファイル: phc.py プロジェクト: akloumann/Bot
        filename = 'genome' + str(fit_labels[0])
        del fit_labels[0]
        pathLoad = c.pathLoad
        filename = pathLoad + filename
        g = open(filename, 'r')
        genome = pickle.load(g)
        g.close()
    parentsF.p[k] = INDIVIDUAL(k, genome)
    for e in envs.envs:
        parentsF.p[k].Start_Evaluation(envs.envs[e],
                                       pp=False,
                                       pb=True,
                                       send=True)

parentsF.Evaluate(envs, pp=False, pb=True)
parentsF.Print('population size', k)

print('################ Begin parallel hill climber ######################')

while time.time() < t_end:
    # print('############# i', i)
    print('seconds remaining', t_end - time.time())
    print('\nF', end='')
    parentsF.Print()
    childrenF = copy.deepcopy(parentsF)
    childrenF.Mutate()
    childrenF.Evaluate(envs, pp=False, pb=True)
    print('F', end='')
    childrenF.Print(i)
    parentsF.ReplaceWith(childrenF)
    print('W', end='')
コード例 #8
0
    if k < num_rand:
        first = np.random.random_sample((c.numInputs, c.numHidden)) * 2 - 1
        second = np.random.random_sample((c.numHidden, c.numOutputs)) * 2 - 1
        genome = [first, second]
    else:
        filename = 'genome' + str(fit_labels[0])
        del fit_labels[0]
        pathLoad = c.pathLoad
        filename = pathLoad + filename
        g = open(filename, 'r')
        genome = pickle.load(g)
        g.close()

    parents.InitializeUniformPop(genome)
    parents.Evaluate(envs, pp=False, pb=True)
    parents.Print(-1)
    dists = []
    fits = []
    for i in range(0, c.numGensDivPop):
        # the POPULATION constructor creates an empty dictionary and stores the variable popSize
        children = POPULATION(c.popSize, i)
        # children.Print('bm')
        print()
        children.FillFrom(parents)

        print('seconds remaining', t_end - time.time())

        # print('\n0', end=' ')
        parents.Print()
        children.Evaluate(envs, pp=False, pb=True)
        # print(i, end=' ')