def test_parse_links(self): # Make sure that a validate dataloader is added batch_size = 1 self.links_file = get_data_path('links.txt') self.fasta_file = get_data_path('prots.fa') res = parse(self.fasta_file, self.links_file, training_column=4, batch_size=batch_size, num_workers=1, arm_the_gpu=False) self.assertEqual(len(res), 3) train, test, valid = res i = 0 for g, p, n in train: i+= 1 self.assertEqual(len(train), 83) i = 0 for g, p, n in test: i+= 1 self.assertEqual(len(test), 12) # Make sure that a validate dataloader is added i = 0 for g, p, n in valid: i+= 1 self.assertEqual(len(valid), 5)
def setUp(self): self.fasta_file = get_data_path('prots.fa') self.links_dir = os.path.abspath('data/links_files') # TODO: # 1. load dummy model # 2. fix simple_ppi with dummy model # Load dummy model input_dim = len(dictionary) hidden_size = 10 self.emb_dimension = 3 self.pretrained_model = DummyModel(input_dim, hidden_size) # freeze the weights of the pre-trained model for param in self.pretrained_model.parameters(): param.requires_grad = False self.sampler = NegativeSampler(self.fasta_file) self.dataloader = InteractionDataDirectory(self.fasta_file, self.links_dir, training_column=4) self.pos_dataloader = [get_data_path('positives.txt')] self.neg_dataloader = [get_data_path('negatives.txt')] # setup model. self.ppi_model = PPIBinder(hidden_size, self.emb_dimension, self.pretrained_model)
def setUp(self): self.links_file = get_data_path('links.txt') self.fasta_file = get_data_path('prots.fa') self.seqs = list(SeqIO.parse(self.fasta_file, format='fasta')) links = pd.read_table(self.links_file, header=None) truncseqs = list(map(clean, self.seqs)) seqids = list(map(lambda x: x.id, truncseqs)) seqdict = dict(zip(seqids, truncseqs)) self.pairs = preprocess(seqdict, links)
def test_parse_negative(self): batch_size = 1 self.links_file = get_data_path('negative.txt') self.fasta_file = get_data_path('prots.fa') res = parse(self.fasta_file, self.links_file, training_column=4, batch_size=batch_size, num_workers=1, arm_the_gpu=False) self.assertEqual(len(res), 3) self.assertIsNone(res[0]) self.assertIsNotNone(res[1]) self.assertIsNotNone(res[2]) self.assertEqual(len(res[2]), 2)
def setUp(self): self.fasta_file = get_data_path('prots.fa') self.links_file = os.path.abspath('data/links_files') self.logging1 = 'logging1' self.logging2 = 'logging2' self.modelpath = 'model.pkt' # not ideal :( # on popeye self.checkpoint = '/simons/scratch/jmorton/mgt/checkpoints/uniref90' self.data_dir = '/simons/scratch/jmorton/mgt/data/uniref50' # on rusty # self.checkpoint = '/simons/scratch/jmorton/mgt/checkpoints/uniref50' # self.data_dir = '/simons/scratch/jmorton/mgt/data/uniref50' self.checkpoint = '/mnt/home/jmorton/research/gert/data/full/uniref50/checkpoints' self.data_dir = '/mnt/home/jmorton/research/gert/data/full/uniref50/pretrain_data'
def setUp(self): self.links_file = get_data_path('links.txt') self.fasta_file = get_data_path('prots.fa')