コード例 #1
0
def evaluate_population(pop: Population, cfg: Config, cpu: int, experiment_id: int):
    """Evaluate the given population."""
    pop.log(f"{pop.name} - Evaluating the population...")
    _, game_ids_eval = get_game_ids(experiment_id=experiment_id)
    multi_env = get_multi_env(pop=pop, game_config=cfg)
    multi_env.set_games(game_ids_eval, noise=False)
    pool = mp.Pool(mp.cpu_count() - cpu)
    manager = mp.Manager()
    return_dict = manager.dict()
    pbar = tqdm(total=len(pop.population), desc="Evaluating")
    
    def update(*_):
        pbar.update()
    
    for genome_id, genome in pop.population.items():
        pool.apply_async(func=multi_env.eval_genome, args=((genome_id, genome), return_dict), callback=update)
    pool.close()  # Close the pool
    pool.join()  # Postpone continuation until everything is finished
    pbar.close()
    
    # Calculate the fitness from the given return_dict
    pop.log(f"{pop.name} - Calculating fitness scores...")
    fitness = calc_pop_fitness(
            fitness_cfg=pop.config.evaluation,
            game_cfg=cfg.game,
            game_obs=return_dict,
            gen=pop.generation,
    )
    for i, genome in pop.population.items():
        genome.fitness = fitness[i]
    
    # Get the fittest genome
    best = None
    for g in pop.population.values():
        if best is None or g.fitness > best.fitness: best = g
    pop.best_genome = best
    
    # Save the results
    pop.save()
    
    # Visualize most fit genome
    visualize_genome(
            debug=True,
            genome=best,
            population=pop,
    )
    
    # Trace the most fit genome
    trace_most_fit(
            debug=False,
            games=game_ids_eval,
            genome=best,
            population=pop,
            unused_cpu=cpu,
    )
コード例 #2
0
ファイル: main.py プロジェクト: RubenPants/EvolvableRNN
    parser.add_argument('--debug', type=bool, default=False)
    parser.add_argument('--duration', type=int, default=60)
    parser.add_argument('--use_backup', type=bool, default=False)
    args = parser.parse_args()

    # Setup the population
    pop = Population(
        name='NEAT-GRU/example',
        folder_name=get_folder(args.experiment),
        use_backup=args.use_backup,
    )

    game_ids_train, game_ids_eval = get_game_ids(experiment_id=args.experiment)

    # Potentially modify the population
    if not pop.best_genome: pop.best_genome = list(pop.population.values())[0]

    # Chosen genome used for genome-evaluation
    chosen_genome = None
    # chosen_genome = pop.population[47280]

    try:
        if args.train:
            train(
                debug=args.debug,
                duration=args.duration,
                games=game_ids_train,
                iterations=args.iterations,
                population=pop,
                unused_cpu=args.unused_cpu,
            )
コード例 #3
0
def train(
    population: Population,
    game_config: Config,
    games: list,
    iterations: int,
    unused_cpu: int = 0,
    save_interval: int = 10,
):
    """Train the population on the requested number of iterations. Manual adaptation of main's train()."""

    population.log("\n===> TRAINING <===\n")

    multi_env = get_multi_env(pop=population, game_config=game_config)
    msg = f"Repetitive evaluating on games: {games} for {iterations} iterations"
    population.log(msg, print_result=False)

    # Iterate and evaluate over the games
    saved = True
    for iteration in range(iterations):
        # Set and randomize the games
        multi_env.set_games(games, noise=True)

        # Prepare the generation's reporters for the generation
        population.reporters.start_generation(gen=population.generation,
                                              logger=population.log)

        # Fetch the dictionary of genomes
        genomes = list(iteritems(population.population))

        # Initialize the evaluation-pool
        pool = mp.Pool(mp.cpu_count() - unused_cpu)
        manager = mp.Manager()
        return_dict = manager.dict()

        for genome in genomes:
            pool.apply_async(func=multi_env.eval_genome,
                             args=(genome, return_dict))
        pool.close()  # Close the pool
        pool.join()  # Postpone continuation until everything is finished

        # Calculate the fitness from the given return_dict
        fitness = calc_pop_fitness(
            fitness_cfg=population.config.evaluation,
            game_cfg=game_config.game,
            game_obs=return_dict,
            gen=population.generation,
        )
        for i, genome in genomes:
            genome.fitness = fitness[i]

        # Gather and report statistics
        best = None
        for g in itervalues(population.population):
            if best is None or g.fitness > best.fitness: best = g
        population.reporters.post_evaluate(population=population.population,
                                           species=population.species,
                                           best_genome=best,
                                           logger=population.log)

        # Update the population's best_genome
        genomes = sorted(population.population.items(),
                         key=lambda x: x[1].fitness,
                         reverse=True)
        population.best_fitness[population.generation] = genomes[0][1].fitness
        population.best_genome_hist[population.generation] = genomes[0]
        population.best_genome = best

        # Let population evolve
        population.evolve()

        # Update the genomes such all have one hidden node
        for g in population.population.values():
            n_hidden, _ = g.size()
            while n_hidden < 1:
                g.mutate_add_connection(population.config.genome)
                n_hidden, _ = g.size()

        # End generation
        population.reporters.end_generation(population=population.population,
                                            name=str(population),
                                            species_set=population.species,
                                            logger=population.log)

        # Save the population
        if (iteration + 1) % save_interval == 0:
            population.save()
            saved = True
        else:
            saved = False

    # Make sure that last iterations saves
    if not saved: population.save()
コード例 #4
0
def single_evaluation(multi_env, parallel: bool, pop: Population,
                      unused_cpu: int):
    """
    Perform a single evaluation-iteration.
    
    :param multi_env: Environment used to execute the game-simulation in
    :param parallel: Boolean indicating if training happens in parallel or not
    :param pop: Population used to evaluate on
    :param unused_cpu: Number of CPU-cores not used during evaluation
    """
    # Prepare the generation's reporters for the generation
    pop.reporters.start_generation(gen=pop.generation, logger=pop.log)

    # Fetch the dictionary of genomes
    genomes = list(iteritems(pop.population))

    if parallel:
        pbar = tqdm(total=len(genomes), desc="parallel training")

        # Initialize the evaluation-pool
        pool = mp.Pool(mp.cpu_count() - unused_cpu)
        manager = mp.Manager()
        return_dict = manager.dict()

        def cb(*_):
            """Update progressbar after finishing a single genome's evaluation."""
            pbar.update()

        for genome in genomes:
            pool.apply_async(func=multi_env.eval_genome,
                             args=(genome, return_dict),
                             callback=cb)
        pool.close()  # Close the pool
        pool.join()  # Postpone continuation until everything is finished
        pbar.close()  # Close the progressbar
    else:
        return_dict = dict()
        for genome in tqdm(genomes, desc="sequential training"):
            multi_env.eval_genome(genome, return_dict)

    # Calculate the fitness from the given return_dict
    try:
        fitness = calc_pop_fitness(
            fitness_config=pop.config.evaluation,
            game_observations=return_dict,
            game_params=multi_env.get_game_params(),
            generation=pop.generation,
        )
        for i, genome in genomes:
            genome.fitness = fitness[i]
    except Exception:  # TODO: Fix! Sometimes KeyError in fitness (path problem)
        pop.log(
            f"Exception at fitness calculation: \n{traceback.format_exc()}",
            print_result=False)
        warnings.warn(
            f"Exception at fitness calculation: \n{traceback.format_exc()}")
        # Set fitness to zero for genomes that have no fitness set yet
        for i, genome in genomes:
            if not genome.fitness: genome.fitness = 0.0

    # Gather and report statistics
    best = None
    for g in itervalues(pop.population):
        if best is None or g.fitness > best.fitness: best = g
    pop.reporters.post_evaluate(population=pop.population,
                                species=pop.species,
                                best_genome=best,
                                logger=pop.log)

    # Update the population's best_genome
    genomes = sorted(pop.population.items(),
                     key=lambda x: x[1].fitness,
                     reverse=True)
    pop.best_genome_hist[
        pop.generation] = genomes[:pop.config.population.genome_elitism]
    if pop.best_genome is None or best.fitness > pop.best_genome.fitness:
        pop.best_genome = best

    # Let population evolve
    pop.evolve()

    # End generation
    pop.reporters.end_generation(population=pop.population,
                                 name=str(pop),
                                 species_set=pop.species,
                                 logger=pop.log)
コード例 #5
0
def main(pop_name: str,
         version: int,
         unused_cpu: int = 2,
         use_backup: bool = False):
    # Check if valid population name
    if pop_name not in SUPPORTED:
        raise Exception(f"Population '{pop_name}' not supported!")
    # Create the population
    cfg = get_config()
    cfg.population.specie_elitism = 1
    folder = get_folder(experiment_id=7)
    pop = Population(
        name=f'{pop_name}/v{version}',
        config=cfg,
        folder_name=folder,
        use_backup=use_backup,
    )

    # Replace the population's initial population with the requested topologies genomes
    if pop.generation == 0:
        for g_id in pop.population.keys():
            pop.population[g_id] = get_topology(pop_name, gid=g_id, cfg=cfg)
        pop.species.speciate(config=pop.config,
                             population=pop.population,
                             generation=pop.generation,
                             logger=pop.log)

    pop.log(f"\n\n\n===> RUNNING EXPERIMENT 7 <===\n")
    # Set games and environment used for training and evaluation
    games_train, games_eval = get_game_ids(experiment_id=7)
    train_env = get_multi_env(config=cfg)
    eval_env = get_multi_env(config=cfg)
    eval_env.set_games(games_eval, noise=False)

    solution_found = False
    while not solution_found:
        # Train the population for a single iteration
        pop.log("\n===> TRAINING <===")
        train_env.set_games(games_train, noise=True)

        # Prepare the generation's reporters for the generation
        pop.reporters.start_generation(gen=pop.generation, logger=pop.log)

        # Fetch the dictionary of genomes
        genomes = list(iteritems(pop.population))

        # Initialize the evaluation-pool
        pool = mp.Pool(mp.cpu_count() - unused_cpu)
        manager = mp.Manager()
        return_dict = manager.dict()

        for genome in genomes:
            pool.apply_async(func=train_env.eval_genome,
                             args=(genome, return_dict))
        pool.close()  # Close the pool
        pool.join()  # Postpone continuation until everything is finished

        # Calculate the fitness from the given return_dict
        fitness = calc_pop_fitness(
            fitness_cfg=pop.config.evaluation,
            game_cfg=cfg.game,
            game_obs=return_dict,
            gen=pop.generation,
        )
        for i, genome in genomes:
            genome.fitness = fitness[i]

        # Update the population's best_genome
        best = None
        for g in itervalues(pop.population):
            if best is None or g.fitness > best.fitness: best = g
        pop.reporters.post_evaluate(population=pop.population,
                                    species=pop.species,
                                    best_genome=best,
                                    logger=pop.log)

        # Update the population's best_genome
        genomes = sorted(pop.population.items(),
                         key=lambda x: x[1].fitness,
                         reverse=True)
        pop.best_fitness[pop.generation] = genomes[0][1].fitness
        pop.best_genome_hist[pop.generation] = genomes[0]
        pop.best_genome = best

        # Let population evolve
        evolve(pop, pop_name)

        # End generation
        pop.reporters.end_generation(population=pop.population,
                                     name=str(pop),
                                     species_set=pop.species,
                                     logger=pop.log)

        # Test if evaluation finds a solution for the new generation, impossible if fitness < 0.7
        if pop.best_genome.fitness > 0.7 or pop.generation % 10 == 0:
            pop.log("\n===> EVALUATING <===")
            genomes = list(iteritems(pop.population))
            pool = mp.Pool(mp.cpu_count() - unused_cpu)
            manager = mp.Manager()
            return_dict = manager.dict()
            for genome in genomes:
                pool.apply_async(func=eval_env.eval_genome,
                                 args=(genome, return_dict))
            pool.close()  # Close the pool
            pool.join()  # Postpone continuation until everything is finished

            # Calculate the fitness from the given return_dict
            finished = calc_finished_ratio(
                fitness_cfg=cfg.evaluation,
                game_obs=return_dict,
            )
            best = None
            for i, genome in genomes:
                genome.fitness = finished[i]
                if best is None or finished[i] > best.fitness: best = genome
            pop.log(f"Best genome:\n{best}\n{best.nodes[2]}")

            # Solution is found
            if best.fitness == 1:
                pop.best_genome = best
                pop.log(f"Solution found!")
                solution_found = True  # End the outer while-loop

        # Save the population with their evaluation results
        pop.save()
コード例 #6
0
def main(topology_id: int,
         iterations: int,
         eval_interval: int,
         experiment_id: int,
         hops: float = 0.1,
         weight_range: float = 1,
         mutate_combine: bool = False,
         mutate_bias: bool = True,
         mutate_reset: bool = True,
         mutate_update: bool = True,
         mutate_candidate: bool = True,
         init_population_size: int = 1000,
         unused_cpu: int = 2):
    """
    Run the fifth experiment.
    
    :param topology_id: Chosen topology to investigate
    :param iterations: Number of training iterations performed
    :param eval_interval: After how much training iterations evaluation is performed
    :param experiment_id: ID of the experiment used to train and evaluate the population on
    :param hops: Hops between variable-configurations
    :param weight_range: Range of deviation for one's weights
    :param mutate_combine: Combine the best results of each mutation type
    :param mutate_bias: Mutate the GRU's bias values
    :param mutate_reset: Mutate the reset-gate's weights
    :param mutate_update: Mutate the update-gate's weights
    :param mutate_candidate: Mutate the candidate-state's weights
    :param init_population_size: Initial size of the randomized population
    :param unused_cpu: Number of CPU-cores not used
    """
    # Get the population
    name = f"experiment{experiment_id}_topology{topology_id}_hops{hops}_range{weight_range}"
    pop = Population(
        name=name,
        folder_name='experiment5',
        use_backup=False,
    )

    # Define the games specific to the experiment
    _, game_ids_eval = get_game_ids(experiment_id=experiment_id)

    # Set the genomes if population is new
    if pop.generation == 0:
        # Get the requested topology-type
        if topology_id == 1:
            topology = get_topology1
        elif topology_id == 2:
            topology = get_topology2
        else:
            raise Exception(f"Topology {topology_id} not supported.")

        # Initialize the population with a randomized population
        pop.population = dict()
        for gid in range(init_population_size):
            new_genome = topology(pop.config, random_init=True)
            new_genome.key = gid
            pop.population[gid] = new_genome

        # Perform an initial training
        train_population(pop=pop, games=game_ids_eval, unused_cpu=unused_cpu)
        pop.generation = 0  # Don't count initial training as a generation

        # Get the fittest genome
        best = None
        for g in pop.population.values():
            if best is None or g.fitness > best.fitness: best = g
        pop.best_genome = best
        visualize_best_genome(pop=pop)

        # Test the initial population
        test_population(pop=pop, games=game_ids_eval)

        # Set the most fit genome as the starting-point
        set_population(pop=pop,
                       hops=hops,
                       weight_range=weight_range,
                       mutate_bias=mutate_bias,
                       mutate_reset=mutate_reset,
                       mutate_update=mutate_update,
                       mutate_candidate=mutate_candidate)

    # Evaluate the population
    for i in range(iterations):
        train_population(pop=pop, games=game_ids_eval, unused_cpu=unused_cpu)
        evaluate_fitness(pop=pop,
                         hops=hops,
                         weight_range=weight_range,
                         mutate_combine=mutate_combine,
                         mutate_bias=mutate_bias,
                         mutate_reset=mutate_reset,
                         mutate_update=mutate_update,
                         mutate_candidate=mutate_candidate)
        visualize_best_genome(pop=pop)
        if pop.generation % eval_interval == 0:
            test_population(pop=pop, games=game_ids_eval)
        set_population(pop=pop,
                       hops=hops,
                       weight_range=weight_range,
                       mutate_bias=mutate_bias,
                       mutate_reset=mutate_reset,
                       mutate_update=mutate_update,
                       mutate_candidate=mutate_candidate)
コード例 #7
0
def evaluate_fitness(pop: Population,
                     hops: float,
                     weight_range: float,
                     mutate_combine: bool = False,
                     mutate_bias: bool = True,
                     mutate_reset: bool = True,
                     mutate_update: bool = True,
                     mutate_candidate: bool = True):
    """Visualize the fitness-values of the population."""
    # Initialization
    r = int(weight_range / hops)
    dim = 2 * r + 1
    genome_key = 0

    # Enroll the previous best genome
    init_gru = pop.best_genome.nodes[2]
    best_bias_genome = None
    best_reset_genome = None
    best_update_genome = None
    best_candidate_genome = None

    # Create genome-mutations
    if mutate_bias:
        bias_result = np.zeros((3, dim))
        for i in range(3):
            for a in range(dim):
                g = pop.population[genome_key]
                bias_result[i, a] = g.fitness
                if best_bias_genome is None or g.fitness > best_bias_genome.fitness:
                    best_bias_genome = g
                genome_key += 1

        # Formalize the data
        points = [[x, y] for x in range(3) for y in range(dim)]
        points_normalized = [[p1, (p2 - r) * hops] for p1, p2 in points]
        values = [bias_result[p[0], p[1]] for p in points]
        grid_x, grid_y = np.mgrid[0:3:1, -r * hops:(r + 1) * hops:hops]

        # Create the figure
        plt.figure(figsize=(
            10, 2.5))  # Rather horizontal plot due to limited number of rows
        knn_data = griddata(points_normalized,
                            values, (grid_x, grid_y),
                            method='nearest')
        ax = sns.heatmap(
            knn_data,
            annot=True,
            fmt='.3g',
            # vmin=0,
            # vmax=1,
            xticklabels=[round((i - r) * hops, 2) for i in range(dim)],
            yticklabels=['r', 'z', 'h'],
            cbar_kws={
                "pad": 0.02,
                "fraction": 0.05
            },
        )
        ax.invert_yaxis()
        plt.title('Bias mutation')
        plt.xlabel(r'$\Delta bias_h$' + f' (init={list(init_gru.bias_h)!r})')
        plt.ylabel(f'bias components')
        plt.tight_layout()
        path = f"population/storage/{pop.folder_name}/{pop}/"
        path = get_subfolder(path, 'images')
        path = get_subfolder(path, f'gen{pop.generation:05d}')
        plt.savefig(f"{path}bias.png")
        plt.close()

    if mutate_reset:
        reset_result = np.zeros((dim, dim))
        for a in range(dim):
            for b in range(dim):
                g = pop.population[genome_key]
                reset_result[a, b] = g.fitness
                if best_reset_genome is None or g.fitness > best_reset_genome.fitness:
                    best_reset_genome = g
                genome_key += 1

        # Formalize the data
        points = [[x, y] for x in range(dim) for y in range(dim)]
        points_normalized = [[(p1 - r) * hops, (p2 - r) * hops]
                             for p1, p2 in points]
        values = [reset_result[p[0], p[1]] for p in points]
        grid_x, grid_y = np.mgrid[-r * hops:(r + 1) * hops:hops,
                                  -r * hops:(r + 1) * hops:hops]

        # Create the figure
        plt.figure(
            figsize=(15, 15)
        )  # Rather horizontal plot due to limited number of rows  TODO set back to (5, 5)
        knn_data = griddata(points_normalized,
                            values, (grid_x, grid_y),
                            method='nearest')
        ax = sns.heatmap(
            knn_data,
            annot=True,
            fmt='.3g',
            # vmin=0,
            # vmax=1,
            xticklabels=[round((i - r) * hops, 2) for i in range(dim)],
            yticklabels=[round((i - r) * hops, 2) for i in range(dim)],
            cbar_kws={
                "pad": 0.02,
                "fraction": 0.05
            },
        )
        ax.invert_yaxis()
        plt.title('Reset-gate mutation')
        plt.xlabel(r'$\Delta W_{hr}$' +
                   f' (init={round(init_gru.weight_hh[0, 0], 3)})')
        plt.ylabel(r'$\Delta W_{xr}$' +
                   f' (init={round(init_gru.weight_xh[0, 0], 3)})')
        plt.tight_layout()
        path = f"population/storage/{pop.folder_name}/{pop}/"
        path = get_subfolder(path, 'images')
        path = get_subfolder(path, f'gen{pop.generation:05d}')
        plt.savefig(f"{path}reset_gate.png")
        plt.close()

    if mutate_update:
        update_result = np.zeros((dim, dim))
        for a in range(dim):
            for b in range(dim):
                g = pop.population[genome_key]
                update_result[a, b] = g.fitness
                if best_update_genome is None or g.fitness > best_update_genome.fitness:
                    best_update_genome = g
                genome_key += 1

        # Formalize the data
        points = [[x, y] for x in range(dim) for y in range(dim)]
        points_normalized = [[(p1 - r) * hops, (p2 - r) * hops]
                             for p1, p2 in points]
        values = [update_result[p[0], p[1]] for p in points]
        grid_x, grid_y = np.mgrid[-r * hops:(r + 1) * hops:hops,
                                  -r * hops:(r + 1) * hops:hops]

        # Create the figure
        plt.figure(
            figsize=(15, 15)
        )  # Rather horizontal plot due to limited number of rows  TODO set back to (5, 5)
        knn_data = griddata(points_normalized,
                            values, (grid_x, grid_y),
                            method='nearest')
        ax = sns.heatmap(
            knn_data,
            annot=True,
            fmt='.3g',
            # vmin=0,
            # vmax=1,
            xticklabels=[round((i - r) * hops, 2) for i in range(dim)],
            yticklabels=[round((i - r) * hops, 2) for i in range(dim)],
            cbar_kws={
                "pad": 0.02,
                "fraction": 0.05
            },
        )
        ax.invert_yaxis()
        plt.title('Update-gate mutation')
        plt.xlabel(r'$\Delta W_{hz}$' +
                   f' (init={round(init_gru.weight_hh[1, 0], 3)})')
        plt.ylabel(r'$\Delta W_{xz}$' +
                   f' (init={round(init_gru.weight_xh[1, 0], 3)})')
        plt.tight_layout()
        path = f"population/storage/{pop.folder_name}/{pop}/"
        path = get_subfolder(path, 'images')
        path = get_subfolder(path, f'gen{pop.generation:05d}')
        plt.savefig(f"{path}update_gate.png")
        plt.close()

    if mutate_candidate:
        candidate_result = np.zeros((dim, dim))
        for a in range(dim):
            for b in range(dim):
                g = pop.population[genome_key]
                candidate_result[a, b] = g.fitness
                if best_candidate_genome is None or g.fitness > best_candidate_genome.fitness:
                    best_candidate_genome = g
                genome_key += 1

        # Formalize the data
        points = [[x, y] for x in range(dim) for y in range(dim)]
        points_normalized = [[(p1 - r) * hops, (p2 - r) * hops]
                             for p1, p2 in points]
        values = [candidate_result[p[0], p[1]] for p in points]
        grid_x, grid_y = np.mgrid[-r * hops:(r + 1) * hops:hops,
                                  -r * hops:(r + 1) * hops:hops]

        # Create the figure
        plt.figure(
            figsize=(15, 15)
        )  # Rather horizontal plot due to limited number of rows  TODO set back to (5, 5)
        knn_data = griddata(points_normalized,
                            values, (grid_x, grid_y),
                            method='nearest')
        ax = sns.heatmap(
            knn_data,
            annot=True,
            fmt='.3g',
            # vmin=0,
            # vmax=1,
            xticklabels=[round((i - r) * hops, 2) for i in range(dim)],
            yticklabels=[round((i - r) * hops, 2) for i in range(dim)],
            cbar_kws={
                "pad": 0.02,
                "fraction": 0.05
            },
        )
        ax.invert_yaxis()
        plt.title('Candidate-state mutation')
        plt.xlabel(r'$\Delta W_{hh}$' +
                   f' (init={round(init_gru.weight_hh[2, 0], 3)})')
        plt.ylabel(r'$\Delta W_{xh}$' +
                   f' (init={round(init_gru.weight_xh[2, 0], 3)})')
        plt.tight_layout()
        path = f"population/storage/{pop.folder_name}/{pop}/"
        path = get_subfolder(path, 'images')
        path = get_subfolder(path, f'gen{pop.generation:05d}')
        plt.savefig(f"{path}candidate_state.png")
        plt.close()

    # Set the most fit genome
    pop.best_genome.fitness = 0
    if mutate_bias and best_bias_genome.fitness > pop.best_genome.fitness:
        pop.best_genome = copy.deepcopy(best_bias_genome)
    if mutate_reset and best_reset_genome.fitness > pop.best_genome.fitness:
        pop.best_genome = copy.deepcopy(best_reset_genome)
    if mutate_update and best_update_genome.fitness > pop.best_genome.fitness:
        pop.best_genome = copy.deepcopy(best_update_genome)
    if mutate_candidate and best_candidate_genome.fitness > pop.best_genome.fitness:
        pop.best_genome = copy.deepcopy(best_candidate_genome)
    if mutate_combine:
        pop.best_genome.nodes[2].bias_h = best_bias_genome.nodes[2].bias_h
        pop.best_genome.nodes[2].weight_xh_full[
            0, 0] = best_reset_genome.nodes[2].weight_xh_full[0, 0]
        pop.best_genome.nodes[2].weight_xh_full[
            1, 0] = best_update_genome.nodes[2].weight_xh_full[1, 0]
        pop.best_genome.nodes[2].weight_xh_full[
            2, 0] = best_candidate_genome.nodes[2].weight_xh_full[2, 0]
        pop.best_genome.nodes[2].weight_hh[
            0, 0] = best_reset_genome.nodes[2].weight_hh[0, 0]
        pop.best_genome.nodes[2].weight_hh[
            1, 0] = best_update_genome.nodes[2].weight_hh[1, 0]
        pop.best_genome.nodes[2].weight_hh[
            2, 0] = best_candidate_genome.nodes[2].weight_hh[2, 0]
コード例 #8
0
    def evaluate_and_evolve(
        self,
        pop: Population,
        n: int = 1,
        parallel=True,
        save_interval: int = 1,
    ):
        """
        Evaluate the population on the same set of games.
        
        :param pop: Population object
        :param n: Number of generations
        :param parallel: Parallel the code (disable parallelization for debugging purposes)
        :param save_interval: Indicates how often a population gets saved
        """
        multi_env = get_multi_env(pop=pop, game_config=self.game_config)
        msg = f"Repetitive evaluating on games: {self.games} for {n} iterations"
        pop.log(msg, print_result=False)

        # Iterate and evaluate over the games
        saved = True
        for iteration in range(n):
            # Set and randomize the games
            multi_env.set_games(self.games, noise=True)

            # Prepare the generation's reporters for the generation
            pop.reporters.start_generation(gen=pop.generation, logger=pop.log)

            # Fetch the dictionary of genomes
            genomes = list(iteritems(pop.population))

            if parallel:
                # Initialize the evaluation-pool
                pool = mp.Pool(mp.cpu_count() - self.unused_cpu)
                manager = mp.Manager()
                return_dict = manager.dict()

                for genome in genomes:
                    pool.apply_async(func=multi_env.eval_genome,
                                     args=(genome, return_dict))
                pool.close()  # Close the pool
                pool.join(
                )  # Postpone continuation until everything is finished
            else:
                return_dict = dict()
                for genome in tqdm(genomes, desc="sequential training"):
                    multi_env.eval_genome(genome, return_dict)

            # Calculate the fitness from the given return_dict
            fitness = calc_pop_fitness(
                fitness_cfg=pop.config.evaluation,
                game_cfg=self.game_config.game,
                game_obs=return_dict,
                gen=pop.generation,
            )
            for i, genome in genomes:
                genome.fitness = fitness[i]

            # Gather and report statistics
            best = None
            for g in itervalues(pop.population):
                if best is None or g.fitness > best.fitness: best = g
            pop.reporters.post_evaluate(population=pop.population,
                                        species=pop.species,
                                        best_genome=best,
                                        logger=pop.log)

            # Update the population's best_genome
            genomes = sorted(pop.population.items(),
                             key=lambda x: x[1].fitness,
                             reverse=True)
            pop.best_fitness[pop.generation] = genomes[0][1].fitness
            pop.best_genome_hist[pop.generation] = genomes[0]
            pop.best_genome = best

            # Let population evolve
            pop.evolve()

            # End generation
            pop.reporters.end_generation(population=pop.population,
                                         name=str(pop),
                                         species_set=pop.species,
                                         logger=pop.log)

            # Save the population
            if (iteration + 1) % save_interval == 0:
                pop.save()
                saved = True
            else:
                saved = False

        # Make sure that last iterations saves
        if not saved: pop.save()
コード例 #9
0
def main(topology_id: int,
         batch_size: int = 1000,
         train_batch: int = 3,
         min_finished: float = MIN_FINISHED,
         unused_cpu: int = 2,
         save_pop: bool = False,
         use_backup: bool = False):
    """Run a population infinitely long and store all its good genomes."""
    # Get the CSV used to store the results in
    csv_path, csv_name, added = get_csv_path(topology_id, use_backup=use_backup, batch_size=batch_size)
    
    # Create the population
    name = csv_name if save_pop else 'dummy'
    cfg = get_config()
    folder = get_folder(experiment_id=6)
    pop = Population(
            name=name,
            config=cfg,
            folder_name=folder,
            use_backup=use_backup,
            overwrite=True,  # Every iteration, create a new population from scratch
    )
    
    # Replace the population's initial population with the requested topologies genomes
    for g_id in pop.population.keys(): pop.population[g_id] = get_genome(topology_id, g_id=g_id, cfg=cfg)
    pop.species.speciate(config=pop.config,
                         population=pop.population,
                         generation=pop.generation,
                         logger=pop.log)
    
    # Set games and environment used for training and evaluation
    pop.log(f"\n\n\n===> RUNNING EXPERIMENT 6 <===\n")
    games_train, games_eval = get_game_ids(experiment_id=6)
    train_env = get_multi_env(config=cfg)
    eval_env = get_multi_env(config=cfg)
    eval_env.set_games(games_eval, noise=False)
    
    # Keep training and evolving the network until the complete CSV is filled
    last_saved = pop.generation
    try:
        while added < batch_size:
            t = time.localtime()
            pop.log(f"\n\n===> Selective genome creation at {added / batch_size * 100}%, "
                    f"storing in csv '{csv_path.split('/')[-1]}' "
                    f"({t.tm_hour:02d}h-{t.tm_min:02d}m-{t.tm_sec:02d}s) <===")
            
            # Train the population
            pop.log("\n===> Training <===")
            for _ in tqdm(range(train_batch), desc="Training"):
                train_env.set_games(games_train, noise=True)
                genomes = list(iteritems(pop.population))
                
                # Initialize the evaluation-pool
                pool = mp.Pool(mp.cpu_count() - unused_cpu)
                manager = mp.Manager()
                return_dict = manager.dict()
                
                for genome in genomes:
                    pool.apply_async(func=train_env.eval_genome, args=(genome, return_dict))
                pool.close()  # Close the pool
                pool.join()  # Postpone continuation until everything is finished
                
                # Calculate the fitness from the given return_dict
                fitness = calc_pop_fitness(
                        fitness_cfg=pop.config.evaluation,
                        game_cfg=cfg.game,
                        game_obs=return_dict,
                        gen=pop.generation,
                )
                for i, genome in genomes:
                    genome.fitness = fitness[i]
                
                # Update the population's best_genome
                best = None
                for g in itervalues(pop.population):
                    if best is None or g.fitness > best.fitness: best = g
                genomes = sorted(pop.population.items(), key=lambda x: x[1].fitness, reverse=True)
                pop.best_fitness[pop.generation] = genomes[0][1].fitness
                pop.best_genome_hist[pop.generation] = genomes[0]
                pop.best_genome = best
                pop.log(f"Best training fitness: {best.fitness}")
                
                # Let population evolve
                pop.evolve()
                
                # Constraint each of the population's new genomes to the given topology
                for g in pop.population.values():
                    enforce_topology(g, topology_id=topology_id)
            
            # Save the population after training
            if pop.generation - last_saved >= 100:
                pop.save()
                last_saved = pop.generation
            
            # Evaluate the current population as was done in experiment6
            pop.log("\n===> EVALUATING <===")
            genomes = list(iteritems(pop.population))
            pool = mp.Pool(mp.cpu_count() - unused_cpu)
            manager = mp.Manager()
            return_dict = manager.dict()
            for genome in genomes:
                pool.apply_async(func=eval_env.eval_genome, args=(genome, return_dict))
            pool.close()  # Close the pool
            pool.join()  # Postpone continuation until everything is finished
            
            # Calculate the fitness from the given return_dict
            finished = calc_finished_ratio(
                    fitness_cfg=cfg.evaluation,
                    game_obs=return_dict,
            )
            best = None
            for i, genome in genomes:
                genome.fitness = finished[i]
                if best is None or finished[i] > best.fitness: best = genome
            
            # Give evaluation overview of population
            pop.log(f"Best evaluation finish ratio: {round(best.fitness, 2)}")
            best_str = str(best).replace("\n", "\n\t")
            best_str += "\n\t" + str(best.nodes[2]).replace("\n", "\n\t")
            pop.log(f"Best genome: \n\t{best_str}")
            sids = list(iterkeys(pop.species.species))
            sids.sort()
            msg = f"\nPopulation '{name}' has {len(pop.species.species):d} species:" \
                  f"\n\t specie    age    size    finished    stag " \
                  f"\n\t========  =====  ======  ==========  ======"
            pop.log(msg) if pop.log else print(msg)
            for sid in sids:
                s = pop.species.species[sid]
                a = pop.generation - s.created
                n = len(s.members)
                sf = [g.fitness for g in s.members.values() if g.fitness]
                f = "--" if len(sf) == 0 else f"{max(sf):.2f}"
                st = pop.generation - s.last_improved
                msg = f"\t{sid:^8}  {a:^5}  {n:^6}  {f:^10}  {st:^6}"
                pop.log(msg) if pop.log else print(msg)
            
            # Write the result to CSV
            with open(csv_path, 'a', newline='') as f:
                writer = csv.writer(f)
                for _, g in genomes:
                    # Only write the genomes that exceed the minimum 'finished ratio' threshold!
                    if g.fitness >= min_finished:
                        writer.writerow(get_genome_parameters(g, topology_id=topology_id))
                        added += 1
    finally:
        # Remove the dummy population if it exists
        pop.save()
        path = f"population{'_backup' if use_backup else ''}/storage/{pop.folder_name}/dummy/"
        if os.path.exists(path):
            shutil.rmtree(path)