def snow_n(im, voxel_size=1, boundary_faces=['top', 'bottom', 'left', 'right', 'front', 'back'], marching_cubes_area=False, alias=None): r""" Analyzes an image that has been segemented into N phases and extracts all a network for each of the N phases, including geometerical information as well as network connectivity between each phase. Parameters ---------- im : ND-array Image of porous material where each phase is represented by unique integer. Phase integer should start from 1 (0 is ignored) voxel_size : scalar The resolution of the image, expressed as the length of one side of a voxel, so the volume of a voxel would be **voxel_size**-cubed. The default is 1, which is useful when overlaying the PNM on the original image since the scale of the image is always 1 unit lenth per voxel. boundary_faces : list of strings Boundary faces labels are provided to assign hypothetical boundary nodes having zero resistance to transport process. For cubical geometry, the user can choose ‘left’, ‘right’, ‘top’, ‘bottom’, ‘front’ and ‘back’ face labels to assign boundary nodes. If no label is assigned then all six faces will be selected as boundary nodes automatically which can be trimmed later on based on user requirements. marching_cubes_area : bool If ``True`` then the surface area and interfacial area between regions will be calculated using the marching cube algorithm. This is a more accurate representation of area in extracted network, but is quite slow, so it is ``False`` by default. The default method simply counts voxels so does not correctly account for the voxelated nature of the images. alias : dict (Optional) A dictionary that assigns unique image label to specific phases. For example {1: 'Solid'} will show all structural properties associated with label 1 as Solid phase properties. If ``None`` then default labelling will be used i.e {1: 'Phase1',..}. Returns ------- A dictionary containing all N phases size data, as well as the network topological information. The dictionary names use the OpenPNM convention (i.e. 'pore.coords', 'throat.conns') so it may be converted directly to an OpenPNM network object using the ``update`` command. """ # ------------------------------------------------------------------------- # Get alias if provided by user al = _create_alias_map(im, alias=alias) # ------------------------------------------------------------------------- # Perform snow on each phase and merge all segmentation and dt together snow = snow_partitioning_n(im, r_max=4, sigma=0.4, return_all=True, mask=True, randomize=False, alias=al) # ------------------------------------------------------------------------- # Add boundary regions f = boundary_faces regions = add_boundary_regions(regions=snow.regions, faces=f) # ------------------------------------------------------------------------- # Padding distance transform to extract geometrical properties dt = pad_faces(im=snow.dt, faces=f) # ------------------------------------------------------------------------- # For only one phase extraction with boundary regions phases_num = np.unique(im).astype(int) phases_num = np.trim_zeros(phases_num) if len(phases_num) == 1: if f is not None: snow.im = pad_faces(im=snow.im, faces=f) regions = regions * (snow.im.astype(bool)) regions = make_contiguous(regions) # ------------------------------------------------------------------------- # Extract N phases sites and bond information from image net = regions_to_network(im=regions, dt=dt, voxel_size=voxel_size) # ------------------------------------------------------------------------- # Extract marching cube surface area and interfacial area of regions if marching_cubes_area: areas = region_surface_areas(regions=regions) interface_area = region_interface_areas(regions=regions, areas=areas, voxel_size=voxel_size) net['pore.surface_area'] = areas * voxel_size**2 net['throat.area'] = interface_area.area # ------------------------------------------------------------------------- # Find interconnection and interfacial area between ith and jth phases net = add_phase_interconnections(net=net, snow_partitioning_n=snow, marching_cubes_area=marching_cubes_area, alias=al) # ------------------------------------------------------------------------- # label boundary cells net = label_boundary_cells(network=net, boundary_faces=f) # ------------------------------------------------------------------------- temp = _net_dict(net) temp.im = im.copy() temp.dt = dt temp.regions = regions return temp
def add_phase_interconnections(net, snow_partitioning_n, voxel_size=1, marching_cubes_area=False, alias=None): r""" This function connects networks of two or more phases together by interconnecting neighbouring nodes inside different phases. The resulting network can be used for the study of transport and kinetics at interphase of two phases. Parameters ---------- network : 2D or 3D network A dictoionary containing structural information of two or more phases networks. The dictonary format must be same as porespy region_to_network function. snow_partitioning_n : tuple The output generated by snow_partitioning_n function. The tuple should have phases_max_labels and original image of material. voxel_size : scalar The resolution of the image, expressed as the length of one side of a voxel, so the volume of a voxel would be **voxel_size**-cubed. The default is 1, which is useful when overlaying the PNM on the original image since the scale of the image is alway 1 unit lenth per voxel. marching_cubes_area : bool If ``True`` then the surface area and interfacial area between regions will be causing the marching cube algorithm. This is a more accurate representation of area in extracted network, but is quite slow, so it is ``False`` by default. The default method simply counts voxels so does not correctly account for the voxelated nature of the images. alias : dict (Optional) A dictionary that assigns unique image label to specific phase. For example {1: 'Solid'} will show all structural properties associated with label 1 as Solid phase properties. If ``None`` then default labelling will be used i.e {1: 'Phase1',..}. Returns ------- A dictionary containing network information of individual and connected networks. The dictionary names use the OpenPNM convention so it may be converted directly to an OpenPNM network object using the ``update`` command. """ # ------------------------------------------------------------------------- # Get alias if provided by user im = snow_partitioning_n.im al = _create_alias_map(im, alias=alias) # ------------------------------------------------------------------------- # Find interconnection and interfacial area between ith and jth phases conns1 = net['throat.conns'][:, 0] conns2 = net['throat.conns'][:, 1] label = net['pore.label'] - 1 num = snow_partitioning_n.phase_max_label num = [0, *num] phases_num = np.unique(im * 1) phases_num = np.trim_zeros(phases_num) for i in phases_num: loc1 = np.logical_and(conns1 >= num[i - 1], conns1 < num[i]) loc2 = np.logical_and(conns2 >= num[i - 1], conns2 < num[i]) loc3 = np.logical_and(label >= num[i - 1], label < num[i]) net['throat.{}'.format(al[i])] = loc1 * loc2 net['pore.{}'.format(al[i])] = loc3 if i == phases_num[-1]: loc4 = np.logical_and(conns1 < num[-1], conns2 >= num[-1]) loc5 = label >= num[-1] net['throat.boundary'] = loc4 net['pore.boundary'] = loc5 for j in phases_num: if j > i: pi_pj_sa = np.zeros_like(label) loc6 = np.logical_and(conns2 >= num[j - 1], conns2 < num[j]) pi_pj_conns = loc1 * loc6 net['throat.{}_{}'.format(al[i], al[j])] = pi_pj_conns if any(pi_pj_conns): # --------------------------------------------------------- # Calculates phase[i] interfacial area that connects with # phase[j] and vice versa p_conns = net['throat.conns'][:, 0][pi_pj_conns] s_conns = net['throat.conns'][:, 1][pi_pj_conns] ps = net['throat.area'][pi_pj_conns] p_sa = np.bincount(p_conns, ps) # trim zeros at head/tail position to avoid extra bins p_sa = np.trim_zeros(p_sa) i_index = np.arange(min(p_conns), max(p_conns) + 1) j_index = np.arange(min(s_conns), max(s_conns) + 1) s_pa = np.bincount(s_conns, ps) s_pa = np.trim_zeros(s_pa) pi_pj_sa[i_index] = p_sa pi_pj_sa[j_index] = s_pa # --------------------------------------------------------- # Calculates interfacial area using marching cube method if marching_cubes_area: ps_c = net['throat.area'][pi_pj_conns] p_sa_c = np.bincount(p_conns, ps_c) p_sa_c = np.trim_zeros(p_sa_c) s_pa_c = np.bincount(s_conns, ps_c) s_pa_c = np.trim_zeros(s_pa_c) pi_pj_sa[i_index] = p_sa_c pi_pj_sa[j_index] = s_pa_c net['pore.{}_{}_area'.format( al[i], al[j])] = (pi_pj_sa * voxel_size**2) return net
def snow_partitioning_n(im, r_max=4, sigma=0.4, return_all=True, mask=True, randomize=False, alias=None): r""" This function partitions an imaging oontain an arbitrary number of phases into regions using a marker-based watershed segmentation. Its an extension of snow_partitioning function with all phases partitioned together. Parameters ---------- im : ND-array Image of porous material where each phase is represented by unique integer starting from 1 (0's are ignored). r_max : scalar The radius of the spherical structuring element to use in the Maximum filter stage that is used to find peaks. The default is 4. sigma : scalar The standard deviation of the Gaussian filter used. The default is 0.4. If 0 is given then the filter is not applied, which is useful if a distance transform is supplied as the ``im`` argument that has already been processed. return_all : boolean (default is False) If set to ``True`` a named tuple is returned containing the original image, the combined distance transform, list of each phase max label, and the final combined regions of all phases. mask : boolean (default is True) Apply a mask to the regions which are not under concern. randomize : boolean If ``True`` (default), then the region colors will be randomized before returning. This is helpful for visualizing otherwise neighboring regions have similar coloring and are hard to distinguish. alias : dict (Optional) A dictionary that assigns unique image label to specific phases. For example {1: 'Solid'} will show all structural properties associated with label 1 as Solid phase properties. If ``None`` then default labelling will be used i.e {1: 'Phase1',..}. Returns ------- An image the same shape as ``im`` with the all phases partitioned into regions using a marker based watershed with the peaks found by the SNOW algorithm [1]. If ``return_all`` is ``True`` then a **named tuple** is returned with the following attribute: * ``im`` : The actual image of the porous material * ``dt`` : The combined distance transform of the image * ``phase_max_label`` : The list of max label of each phase in order to distinguish between each other * ``regions`` : The partitioned regions of n phases using a marker based watershed with the peaks found by the SNOW algorithm References ---------- [1] Gostick, J. "A versatile and efficient network extraction algorithm using marker-based watershed segmentation". Physical Review E. (2017) [2] Khan, ZA et al. "Dual network extraction algorithm to investigate multiple transport processes in porous materials: Image-based modeling of pore and grain-scale processes". Computers in Chemical Engineering. (2019) See Also ---------- snow_partitioning Notes ----- In principle it is possible to perform a distance transform on each phase separately, merge these into a single image, then apply the watershed only once. This, however, has been found to create edge artifacts between regions arising from the way watershed handles plateaus in the distance transform. To overcome this, this function applies the watershed to each of the distance transforms separately, then merges the segmented regions back into a single image. """ # Get alias if provided by user al = _create_alias_map(im=im, alias=alias) # Perform snow on each phase and merge all segmentation and dt together phases_num = sp.unique(im * 1) phases_num = sp.trim_zeros(phases_num) combined_dt = 0 combined_region = 0 num = [0] for i in phases_num: print('_' * 60) if alias is None: print('Processing Phase {}'.format(i)) else: print('Processing Phase {}'.format(al[i])) phase_snow = snow_partitioning(im == i, dt=None, r_max=r_max, sigma=sigma, return_all=return_all, mask=mask, randomize=randomize) if len(phases_num) == 1 and phases_num == 1: combined_dt = phase_snow.dt combined_region = phase_snow.regions else: combined_dt += phase_snow.dt phase_snow.regions *= phase_snow.im phase_snow.regions += num[i - 1] phase_ws = phase_snow.regions * phase_snow.im phase_ws[phase_ws == num[i - 1]] = 0 combined_region += phase_ws num.append(sp.amax(combined_region)) if return_all: tup = namedtuple('results', field_names=['im', 'dt', 'phase_max_label', 'regions']) tup.im = im tup.dt = combined_dt tup.phase_max_label = num[1:] tup.regions = combined_region return tup else: return combined_region