コード例 #1
0
# -*- coding: utf-8 -*-
"""
Created on Thu Oct  3 20:41:35 2019

@author: ASUS
"""
import cv2
import numpy as np
import settings
from pose.estimator import TfPoseEstimator
poseEstimator = None
cap = cv2.VideoCapture(0)
while True:
    ret, frame = cap.read()

    show = cv2.resize(frame, (settings.winWidth, settings.winHeight))
    show = cv2.cvtColor(show, cv2.COLOR_BGR2RGB)
    humans = poseEstimator.inference(show)
    print(humans)
    show = TfPoseEstimator.draw_humans(show, humans, imgcopy=False)
コード例 #2
0
    def show_camera(self):
        start = time.time()
        ret, frame = self.cap.read()
        # if not ret:
        #     print('this should save the video')
        #     self.timer_camera.stop()
        #     self.out.release()

        if ret:
            show_s = cv2.resize(frame, (settings.winWidth, settings.winHeight))
            show = cv2.cvtColor(show_s, cv2.COLOR_BGR2RGB)
            if self.__flag_mode == 1:
                self.infoBox.setText(u'当前为人体Attitude Estimation模式')
                humans = poseEstimator.inference(show)
                show = TfPoseEstimator.draw_humans(show, humans, imgcopy=False)

            elif self.__flag_mode == 2:
                self.infoBox.setText(u'当前为Multiplayer tracking模式')
                humans = poseEstimator.inference(show)
                show, joints, bboxes, xcenter, sk = TfPoseEstimator.get_skeleton(
                    show, humans, imgcopy=False)
                show = TfPoseEstimator.draw_humans(show, humans, imgcopy=False)
                height = show.shape[0]
                width = show.shape[1]
                if bboxes:
                    result = np.array(bboxes)
                    det = result[:, 0:5]
                    det[:, 0] = det[:, 0] * width
                    det[:, 1] = det[:, 1] * height
                    det[:, 2] = det[:, 2] * width
                    det[:, 3] = det[:, 3] * height
                    trackers = self.tracker.update(det)

                    for d in trackers:
                        xmin = int(d[0])
                        ymin = int(d[1])
                        xmax = int(d[2])
                        ymax = int(d[3])
                        label = int(d[4])
                        cv2.rectangle(show, (xmin, ymin), (xmax, ymax),
                                      (int(settings.c[label % 32, 0]),
                                       int(settings.c[label % 32, 1]),
                                       int(settings.c[label % 32, 2])), 4)

            # This is the part to get the kt points
            elif self.__flag_mode == 3:
                self.infoBox.setText(u'当前为人体Behavior recognition模式')
                humans = poseEstimator.inference(show)
                ori = np.copy(show)
                show, joints, bboxes, xcenter, sk = TfPoseEstimator.get_skeleton(
                    show, humans, imgcopy=False)
                show = TfPoseEstimator.draw_humans(show, humans, imgcopy=False)
                height = show.shape[0]
                width = show.shape[1]
                if bboxes:
                    result = np.array(bboxes)
                    det = result[:, 0:5]
                    det[:, 0] = det[:, 0] * width
                    det[:, 1] = det[:, 1] * height
                    det[:, 2] = det[:, 2] * width
                    det[:, 3] = det[:, 3] * height
                    trackers = self.tracker.update(det)
                    self.current = [i[-1] for i in trackers]

                    if len(self.previous) > 0:
                        for item in self.previous:
                            if item not in self.current and item in self.data:
                                del self.data[item]
                            if item not in self.current and item in self.memory:
                                del self.memory[item]

                    self.previous = self.current
                    for d in trackers:
                        xmin = int(d[0])
                        ymin = int(d[1])
                        xmax = int(d[2])
                        ymax = int(d[3])
                        label = int(d[4])
                        try:
                            j = np.argmin(
                                np.array([
                                    abs(i - (xmax + xmin) / 2.)
                                    for i in xcenter
                                ]))
                        except:
                            j = 0
                        if joint_filter(joints[j]):
                            joints[j] = joint_completion(
                                joint_completion(joints[j]))
                            if label not in self.data:
                                self.data[label] = [joints[j]]
                                self.memory[label] = 0
                            else:
                                self.data[label].append(joints[j])

                            if len(self.data[label]) == settings.L:
                                pred = actionPredictor().move_status(
                                    self.data[label])
                                if pred == 0:
                                    pred = self.memory[label]
                                else:
                                    self.memory[label] = pred
                                self.data[label].pop(0)

                                location = self.data[label][-1][1]
                                if location[0] <= 30:
                                    location = (51, location[1])
                                if location[1] <= 10:
                                    location = (location[0], 31)

                                cv2.putText(
                                    show, settings.move_status[pred],
                                    (location[0] - 30, location[1] - 10),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0),
                                    2)

                        cv2.rectangle(show, (xmin, ymin), (xmax, ymax),
                                      (int(settings.c[label % 32, 0]),
                                       int(settings.c[label % 32, 1]),
                                       int(settings.c[label % 32, 2])), 4)

            self.out.write(show_s)  # Write out frame to video

            end = time.time()
            self.fps = 1. / (end - start)
            cv2.putText(show, 'FPS: %.2f' % self.fps, (30, 30),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
            showImage = QtGui.QImage(show.data, show.shape[1], show.shape[0],
                                     QtGui.QImage.Format_RGB888)
            self.label_show_camera.setPixmap(
                QtGui.QPixmap.fromImage(showImage))
        else:
            print('this should save the video')
            self.timer_camera.stop()
            self.out.release()
コード例 #3
0
    def show_camera(self):
        start = time.time()
        ret, frame = self.cap.read()
        show = cv2.resize(frame, (settings.winWidth, settings.winHeight))
        show = cv2.cvtColor(show, cv2.COLOR_BGR2RGB)
        if ret:
            if self.__flag_mode == 1:
                self.infoBox.setText(u'当前为人体姿态估计模式')
                humans = poseEstimator.inference(show)
                show = TfPoseEstimator.draw_humans(show, humans, imgcopy=False)

            elif self.__flag_mode == 2:
                self.infoBox.setText(u'当前为多人跟踪模式')
                humans = poseEstimator.inference(show)
                show, joints, bboxes, xcenter = TfPoseEstimator.get_skeleton(
                    show, humans, imgcopy=False)
                height = show.shape[0]
                width = show.shape[1]
                if bboxes:
                    result = np.array(bboxes)
                    det = result[:, 0:5]
                    det[:, 0] = det[:, 0] * width
                    det[:, 1] = det[:, 1] * height
                    det[:, 2] = det[:, 2] * width
                    det[:, 3] = det[:, 3] * height
                    trackers = self.tracker.update(det)

                    for d in trackers:
                        xmin = int(d[0])
                        ymin = int(d[1])
                        xmax = int(d[2])
                        ymax = int(d[3])
                        label = int(d[4])
                        cv2.rectangle(show, (xmin, ymin), (xmax, ymax),
                                      (int(settings.c[label % 32, 0]),
                                       int(settings.c[label % 32, 1]),
                                       int(settings.c[label % 32, 2])), 4)

            elif self.__flag_mode == 3:
                self.infoBox.setText(u'当前为人体行为识别模式')
                humans = poseEstimator.inference(show)
                ori = np.copy(show)
                show, joints, bboxes, xcenter, sk = TfPoseEstimator.get_skeleton(
                    show, humans, imgcopy=False)
                height = show.shape[0]
                width = show.shape[1]
                if bboxes:
                    result = np.array(bboxes)
                    det = result[:, 0:5]
                    det[:, 0] = det[:, 0] * width
                    det[:, 1] = det[:, 1] * height
                    det[:, 2] = det[:, 2] * width
                    det[:, 3] = det[:, 3] * height
                    trackers = self.tracker.update(det)  #有几个框就生成几个追踪器
                    self.current = [i[-1] for i in trackers]

                    if len(self.previous) > 0:
                        for item in self.previous:
                            if item not in self.current and item in self.data:
                                del self.data[item]
                            if item not in self.current and item in self.memory:
                                del self.memory[item]

                    self.previous = self.current
                    for d in trackers:
                        xmin = int(d[0])
                        ymin = int(d[1])
                        xmax = int(d[2])
                        ymax = int(d[3])
                        label = int(d[4])

                        try:
                            j = np.argmin(
                                np.array([
                                    abs(i - (xmax + xmin) / 2.)
                                    for i in xcenter
                                ]))
                        except:
                            j = 0

                        if joint_filter(joints[j]):
                            pred = 0
                            joints[j] = joint_completion(
                                joint_completion(joints[j]))
                            if len(joints[j]) == 18:
                                if label not in self.data:
                                    self.data[label] = [
                                        joints[j]
                                    ]  #self.data[label]:[{0:(xj1,yj1),1:(xj2,yj2),...,n:(xjn,yjn)},{},{}]
                                    self.memory[label] = 0
                                else:
                                    self.data[label].append(joints[j])

                            #print('len(self.data[label]):{0}'.format(len(self.data[label])))
                            if len(
                                    self.data[label]
                            ) == settings.L:  #self.data[label]:[16,{18,key:(x,y)}]
                                for i in range(settings.L):
                                    keys = self.data[label][i].keys()
                                    keys = sorted(keys)
                                    for key in keys:
                                        self.one_frame.append(
                                            np.array(self.data[label][i][key]))
                                    if label not in self.pred_data:
                                        self.pred_data[label] = [
                                            np.array(self.one_frame)
                                        ]
                                    else:
                                        self.pred_data[label].append(
                                            np.array(self.one_frame)
                                        )  #[[[x0 y0],..[x17 y17]],..[]]
                                    self.one_frame = []
                                self.pred_data[label] = np.array(
                                    self.pred_data[label])

                                pred = sk_cnn_actionPredicter.predict(
                                    self.pred_data[label])

                                #print('预测动作下标:{0}'.format(pred))
                                self.pred_data[label] = []
                                self.data[label].pop(0)

                            location = self.data[label][-1][1]
                            if location[0] <= 30:
                                location = (51, location[1])
                            if location[1] <= 10:
                                location = (location[0], 31)

                            #print('预测动作类别:{0}'.format(settings.move_status[pred]))
                            cv2.putText(show, settings.move_status[pred],
                                        (location[0] - 30, location[1] - 10),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.8,
                                        (0, 255, 0), 2)

                        cv2.rectangle(show, (xmin, ymin), (xmax, ymax),
                                      (int(settings.c[label % 32, 0]),
                                       int(settings.c[label % 32, 1]),
                                       int(settings.c[label % 32, 2])), 4)

            end = time.time()
            self.fps = 1. / (end - start)
            cv2.putText(show, 'FPS: %.2f' % self.fps, (30, 30),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
            showImage = QtGui.QImage(show.data, show.shape[1], show.shape[0],
                                     QtGui.QImage.Format_RGB888)
            self.label_show_camera.setPixmap(
                QtGui.QPixmap.fromImage(showImage))
コード例 #4
0
    def show_camera(self, frame):
        start = time.time()
        # ret, frame = self.cap.read()
        show = cv2.resize(frame, (settings.winWidth, settings.winHeight))
        show = cv2.cvtColor(show, cv2.COLOR_BGR2RGB)
        if ret:
            if self.__flag_mode == 1:

                humans = poseEstimator.inference(show)
                show = TfPoseEstimator.draw_humans(show, humans, imgcopy=False)

            elif self.__flag_mode == 2:
                humans = poseEstimator.inference(show)
                show, joints, bboxes, xcenter, sk = TfPoseEstimator.get_skeleton(
                    show, humans, imgcopy=False)
                height = show.shape[0]
                width = show.shape[1]
                if bboxes:
                    result = np.array(bboxes)
                    det = result[:, 0:5]
                    det[:, 0] = det[:, 0] * width
                    det[:, 1] = det[:, 1] * height
                    det[:, 2] = det[:, 2] * width
                    det[:, 3] = det[:, 3] * height
                    trackers = self.tracker.update(det)

                    for d in trackers:
                        xmin = int(d[0])
                        ymin = int(d[1])
                        xmax = int(d[2])
                        ymax = int(d[3])
                        label = int(d[4])
                        cv2.rectangle(show, (xmin, ymin), (xmax, ymax),
                                      (int(settings.c[label % 32, 0]),
                                       int(settings.c[label % 32, 1]),
                                       int(settings.c[label % 32, 2])), 4)

            # This is the part to get the kt points
            elif self.__flag_mode == 3:
                humans = poseEstimator.inference(show)
                ori = np.copy(show)
                show, joints, bboxes, xcenter, sk = TfPoseEstimator.get_skeleton(
                    show, humans, imgcopy=False)
                height = show.shape[0]
                width = show.shape[1]
                if bboxes:
                    result = np.array(bboxes)
                    det = result[:, 0:5]
                    det[:, 0] = det[:, 0] * width
                    det[:, 1] = det[:, 1] * height
                    det[:, 2] = det[:, 2] * width
                    det[:, 3] = det[:, 3] * height
                    trackers = self.tracker.update(det)
                    self.current = [i[-1] for i in trackers]

                    if len(self.previous) > 0:
                        for item in self.previous:
                            if item not in self.current and item in self.data:
                                del self.data[item]
                            if item not in self.current and item in self.memory:
                                del self.memory[item]

                    self.previous = self.current
                    for d in trackers:
                        xmin = int(d[0])
                        ymin = int(d[1])
                        xmax = int(d[2])
                        ymax = int(d[3])
                        label = int(d[4])
                        try:
                            j = np.argmin(
                                np.array([
                                    abs(i - (xmax + xmin) / 2.)
                                    for i in xcenter
                                ]))
                        except:
                            j = 0
                        if joint_filter(joints[j]):
                            joints[j] = joint_completion(
                                joint_completion(joints[j]))
                            if label not in self.data:
                                self.data[label] = [joints[j]]
                                self.memory[label] = 0
                            else:
                                self.data[label].append(joints[j])

                            if len(self.data[label]) == settings.L:
                                pred = actionPredictor().move_status(
                                    self.data[label])
                                if pred == 0:
                                    pred = self.memory[label]
                                else:
                                    self.memory[label] = pred
                                self.data[label].pop(0)

                                location = self.data[label][-1][1]
                                if location[0] <= 30:
                                    location = (51, location[1])
                                if location[1] <= 10:
                                    location = (location[0], 31)

                                cv2.putText(
                                    show, settings.move_status[pred],
                                    (location[0] - 30, location[1] - 10),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0),
                                    2)

                        cv2.rectangle(show, (xmin, ymin), (xmax, ymax),
                                      (int(settings.c[label % 32, 0]),
                                       int(settings.c[label % 32, 1]),
                                       int(settings.c[label % 32, 2])), 4)

            cv2.imshow('window', cv2.resize(show, (432, 368)))
            self.out.write(show)  # Write out frame to video
            end = time.time()
コード例 #5
0
 def _perform_estimation_(self):
     self.humans = self.estimator.inference(self.image)
     self.image = TfPoseEstimator.draw_humans(self.image,
                                              self.humans,
                                              imgcopy=False)
コード例 #6
0
    def show_video(self):
        self.video_event = True
        start = time.time()
        cap = cv2.VideoCapture('22_360p.mp4')

        while (cap.isOpened()):
            ret, frame = cap.read()

            show = cv2.resize(frame, (settings.winWidth, settings.winHeight))
            show = cv2.cvtColor(show, cv2.COLOR_BGR2RGB)
            if ret:
                if self.__flag_mode == 1:
                    self.infoBox.setText(u'현재 인간 포즈 추정 모드')
                    humans = poseEstimator.inference(show)
                    show = TfPoseEstimator.draw_humans(show,
                                                       humans,
                                                       imgcopy=False)

                elif self.__flag_mode == 2:
                    self.infoBox.setText(u'현재 다중 인간 포즈 추정 모드')
                    humans = poseEstimator.inference(show)
                    show, joints, bboxes, xcenter, sk = TfPoseEstimator.get_skeleton(
                        show, humans, imgcopy=False)
                    height = show.shape[0]
                    width = show.shape[1]
                    if bboxes:
                        result = np.array(bboxes)
                        det = result[:, 0:5]
                        det[:, 0] = det[:, 0] * width
                        det[:, 1] = det[:, 1] * height
                        det[:, 2] = det[:, 2] * width
                        det[:, 3] = det[:, 3] * height
                        trackers = self.tracker.update(det)

                        for d in trackers:
                            xmin = int(d[0])
                            ymin = int(d[1])
                            xmax = int(d[2])
                            ymax = int(d[3])
                            label = int(d[4])
                            cv2.rectangle(show, (xmin, ymin), (xmax, ymax),
                                          (int(settings.c[label % 32, 0]),
                                           int(settings.c[label % 32, 1]),
                                           int(settings.c[label % 32, 2])), 4)

                elif self.__flag_mode == 3:
                    self.infoBox.setText(u'현재 인간 행동 인식 모드')
                    humans = poseEstimator.inference(show)
                    ori = np.copy(show)
                    show, joints, bboxes, xcenter, sk = TfPoseEstimator.get_skeleton(
                        show, humans, imgcopy=False)
                    height = show.shape[0]
                    width = show.shape[1]
                    if bboxes:
                        result = np.array(bboxes)
                        det = result[:, 0:5]
                        det[:, 0] = det[:, 0] * width
                        det[:, 1] = det[:, 1] * height
                        det[:, 2] = det[:, 2] * width
                        det[:, 3] = det[:, 3] * height
                        trackers = self.tracker.update(det)
                        self.current = [i[-1] for i in trackers]

                        if len(self.previous) > 0:
                            for item in self.previous:
                                if item not in self.current and item in self.data:
                                    del self.data[item]
                                if item not in self.current and item in self.memory:
                                    del self.memory[item]

                        self.previous = self.current
                        for d in trackers:
                            xmin = int(d[0])
                            ymin = int(d[1])
                            xmax = int(d[2])
                            ymax = int(d[3])
                            label = int(d[4])
                            try:
                                j = np.argmin(
                                    np.array([
                                        abs(i - (xmax + xmin) / 2.)
                                        for i in xcenter
                                    ]))
                            except:
                                j = 0
                            if joint_filter(joints[j]):
                                joints[j] = joint_completion(
                                    joint_completion(joints[j]))
                                if label not in self.data:
                                    self.data[label] = [joints[j]]
                                    self.memory[label] = 0
                                else:
                                    self.data[label].append(joints[j])

                                if len(self.data[label]) == settings.L:
                                    pred = actionPredictor().move_status(
                                        self.data[label])
                                    if pred == 0:
                                        pred = self.memory[label]
                                    else:
                                        self.memory[label] = pred
                                    self.data[label].pop(0)

                                    location = self.data[label][-1][1]
                                    if location[0] <= 30:
                                        location = (51, location[1])
                                    if location[1] <= 10:
                                        location = (location[0], 31)

                                    cv2.putText(
                                        show, settings.move_status[pred],
                                        (location[0] - 30, location[1] - 10),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.8,
                                        (0, 255, 0), 2)

                            cv2.rectangle(show, (xmin, ymin), (xmax, ymax),
                                          (int(settings.c[label % 32, 0]),
                                           int(settings.c[label % 32, 1]),
                                           int(settings.c[label % 32, 2])), 4)

                end = time.time()
                self.fps = 1. / (end - start)
                cv2.putText(show, 'FPS: %.2f' % self.fps, (30, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
                showImage = QtGui.QImage(show.data, show.shape[1],
                                         show.shape[0],
                                         QtGui.QImage.Format_RGB888)
                self.label_show_camera.setPixmap(
                    QtGui.QPixmap.fromImage(showImage))

            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

        cap.release()
コード例 #7
0
    def show_camera(self):
        start = time.time()
        ret, frame = self.cap.read()
        show = cv2.resize(frame, (settings.winWidth, settings.winHeight))
        show = cv2.cvtColor(show, cv2.COLOR_BGR2RGB)
        if ret:
            if self.__flag_mode == 1:
                self.infoBox.setText(u'当前为人体姿态估计模式')
                humans = poseEstimator.inference(show)
                show = TfPoseEstimator.draw_humans(show, humans, imgcopy=False)

            elif self.__flag_mode == 2:
                self.infoBox.setText(u'当前为多人跟踪模式')
                humans = poseEstimator.inference(show)
                show, joints, bboxes, xcenter, sk = TfPoseEstimator.get_skeleton(show, humans, imgcopy=False)
                height = show.shape[0]
                width = show.shape[1]
                if bboxes:
                    result = np.array(bboxes)
                    det = result[:, 0:5]
                    det[:, 0] = det[:, 0] * width
                    det[:, 1] = det[:, 1] * height
                    det[:, 2] = det[:, 2] * width
                    det[:, 3] = det[:, 3] * height
                    trackers = self.tracker.update(det)

                    for d in trackers:
                        xmin = int(d[0])
                        ymin = int(d[1])
                        xmax = int(d[2])
                        ymax = int(d[3])
                        label = int(d[4])
                        cv2.rectangle(show, (xmin, ymin), (xmax, ymax),
                                      (int(settings.c[label % 32, 0]),
                                       int(settings.c[label % 32, 1]),
                                       int(settings.c[label % 32, 2])), 4)

            elif self.__flag_mode == 3:
                self.infoBox.setText(u'当前为人体行为识别模式')
                humans = poseEstimator.inference(show)
                show = TfPoseEstimator.draw_humans(show, humans, imgcopy=False)
                ori = np.copy(show)
                show, joints, bboxes, xcenter, sk= TfPoseEstimator.get_skeleton(show, humans, imgcopy=False)
                height = show.shape[0]
                width = show.shape[1]
                if bboxes:
                    result = np.array(bboxes)
                    det = result[:, 0:5]
                    det[:, 0] = det[:, 0] * width
                    det[:, 1] = det[:, 1] * height
                    det[:, 2] = det[:, 2] * width
                    det[:, 3] = det[:, 3] * height
                    trackers = self.tracker.update(det)
                    self.current = [i[-1] for i in trackers]

                    if len(self.previous) > 0:
                        for item in self.previous:
                            if item not in self.current and item in self.data:
                                del self.data[item]
                            if item not in self.current and item in self.memory:
                                del self.memory[item]

                    self.previous = self.current
                    for d in trackers:
                        xmin = int(d[0])
                        ymin = int(d[1])
                        xmax = int(d[2])
                        ymax = int(d[3])
                        label = int(d[4])
                        try:
                            j = np.argmin(np.array([abs(i - (xmax + xmin) / 2.) for i in xcenter]))
                        except:
                            j = 0

                        alert = False
                        if joint_filter(joints[j]):
                            joints[j] = joint_completion(joint_completion(joints[j]))
                            if label not in self.data:
                                self.data[label] = [joints[j]]
                                self.memory[label] = 0
                            else:
                                self.data[label].append(joints[j])

                            if len(self.data[label]) == settings.L:
                                pred = actionPredictor().move_status(self.data[label])
                                if pred == 0:
                                    pred = self.memory[label]
                                else:
                                    self.memory[label] = pred
                                self.data[label].pop(0)

                                location = self.data[label][-1][1]
                                if location[0] <= 30:
                                    location = (51, location[1])
                                if location[1] <= 10:
                                    location = (location[0], 31)

                                ## Use simsum.ttc to write Chinese.
                                b, g, r, a = 0, 255, 0, 0
                                img_pil = Image.fromarray(show)
                                draw = ImageDraw.Draw(img_pil)
                                # print('pred', pred)
                                if pred == 8:
                                    draw.text((location[0] - 30, location[1] - 10), settings.move_status[pred], font=self.font, fill=(255, 0, 0, a))
                                    alert = True
                                else:
                                    draw.text((location[0] - 30, location[1] - 10), settings.move_status[pred], font=self.font, fill=(b, g, r, a))
                                show = np.array(img_pil)

                                # cv2.putText(show, settings.move_status[pred], (location[0] - 30, location[1] - 10),
                                #             cv2.FONT_HERSHEY_SIMPLEX, 0.8,
                                #             (0, 255, 0), 2)
                        if alert:
                            colors = (255, 0, 0)
                        else:
                            colors = (int(settings.c[label % 32, 0]),
                                           int(settings.c[label % 32, 1]),
                                           int(settings.c[label % 32, 2]))
                        cv2.rectangle(show, (xmin, ymin), (xmax, ymax),
                                      colors, 4)

                        if alert:
                            cv2.imwrite('files/alerts/fall_' + str(int(time.time())) + '.png', show)

            end = time.time()
            self.fps = 1. / (end - start)
            cv2.putText(show, 'FPS: %.2f' % self.fps, (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
            showImage = QtGui.QImage(show.data, show.shape[1], show.shape[0], QtGui.QImage.Format_RGB888)
            self.label_show_camera.setPixmap(QtGui.QPixmap.fromImage(showImage))