コード例 #1
0
def main():
    config = Config()
    # 关系图中包括(include)哪些函数名。
    #如果是某一类的函数,例如类gobang,则可以直接写'gobang.*',表示以gobang.开头的所有函数。(利用正则表达式)。
    config.trace_filter = GlobbingFilter(include=[
        'main',
        'pycallgraph.*',
        '*.secret_function',
    ])
    graphviz = GraphvizOutput()
    graphviz.output_file = 'basic.png'  #图片名称

    with PyCallGraph(output=graphviz):
        # coco
        modelpath = "model/"
        start = time.time()
        pose_model = general_coco_model(modelpath)  # 1.加载模型
        print("[INFO]Pose Model loads time: ", time.time() - start)
        # yolo
        start = time.time()
        _yolo = YOLO()  # 1.加载模型
        print("[INFO]yolo Model loads time: ", time.time() - start)

        img_path = 'D:/myworkspace/dataset/My_test/img/a_img/airplane_30.jpg'

        getImgInfo(img_path, pose_model, _yolo)
コード例 #2
0
ファイル: UI_main.py プロジェクト: watson1101/AI-project
    def _learning_hand(self, event):
        start = time.time()
        info, lineimage = getImgInfo(self.orgin_img_show, self.pose_model,
                                     self._yolo, '')

        self.XX_test.append(info)
        self.tips.AppendText(u"特征提取耗时:{:.2f} s".format(time.time() - start) +
                             "\n")
        lineimage = cv2.resize(
            lineimage,
            (600, 500),
        )
        height, width = lineimage.shape[:2]
        image1 = cv2.cvtColor(
            lineimage, cv2.COLOR_BGR2RGB
        )  # opencv中imread的图片内部是BGR排序,wxPython的StaticBitmap需要的图片是RGB排序,不转换会出现颜色变换
        pic = wx.Bitmap.FromBuffer(width, height, image1)
        # 显示图片在panel上:
        self.result_img.SetBitmap(pic)
        self.tips.AppendText(u"数字特征:" + str(info) + "\n")
コード例 #3
0
ファイル: get_features.py プロジェクト: watson1101/AI-project
# ----------------------------------------------------------------------------------
# 第二步 识别infolist
# ----------------------------------------------------------------------------------
# coco
modelpath = "model/"
start = time.time()
pose_model = general_coco_model(modelpath)  # 1.加载模型
print("[INFO]Pose Model loads time: ", time.time() - start)
# yolo
start = time.time()
_yolo = YOLO()  # 1.加载模型
print("[INFO]yolo Model loads time: ", time.time() - start)

infolist = []
for i in X:
    hist = getImgInfo(i, pose_model, _yolo)  # 识别
    infolist.append(hist)

# ----------------------------------------------------------------------------------
# 第三步 存储信息docs/feature/features_all.csv
# ----------------------------------------------------------------------------------
# 路径存储到txt
orb = open('D:/myworkspace/dataset/My_test/bagofwords/y_train.txt', 'w')
for i, img_path in enumerate(X):
    orb.write(img_path)
    #orb.write('\n'+str(info)+str(infolist[i]))
orb.close()

# 特征存储到 csv
with open("docs/feature/features_all.csv", "w", newline="") as csvfile:
    writer = csv.writer(csvfile)
コード例 #4
0
from pose.coco import general_coco_model

# coco
modelpath = "model/"
start = time.time()
pose_model = general_coco_model(modelpath)  # 1.加载模型
print("[INFO]Pose Model loads time: ", time.time() - start)
# yolo
start = time.time()
_yolo = YOLO()  # 1.加载模型
print("[INFO]yolo Model loads time: ", time.time() - start)

path = "D:/myworkspace/JupyterNotebook/hand-keras-yolo3-recognize/docs/wangyu_hand_img/"

X_test = [path + "movehouse_37.jpg", path + "movehouse_65.jpg"]

# 测试集
XX_test = []
for i in X_test:
    image = cv2.imread(i)
    hist, _ = getImgInfo(image, pose_model, _yolo)

    XX_test.append(hist)

clf = joblib.load("model/train_model.pkl")
predictions_labels = clf.predict(XX_test)

# 使用测试集预测结果
print(u'预测结果:')
print(predictions_labels)