激情驾驶:15-18题 """ attitude1 = np.array(range(1, 10)) attitude2 = np.array(range(10, 15)) attitude3 = np.array(range(15, 19)) attitude_all = np.array(range(1, 19)) title = np.array( ["安全驾驶态度:妨碍道路畅通且不规则遵守", "安全驾驶态度:超速驾驶", "安全驾驶态度:激情驾驶", "整体安全驾驶态度差"]) n = n + len(title) data = p.sum_score(data, attitude1, attitude2, attitude3, attitude_all) table = np.hstack((table, title)) """ 驾驶员自我效能感,1-9反向记分 """ reverse_order = np.array(range(1, 10)) + 19 - 1 data = p.reverce_score(data, reverse_order, 7) self = np.array(range(1, 13)) + 19 - 1 title2 = np.array(["驾驶员自我效能感差"]) data = p.sum_score(data, self) table = np.hstack((table, title2)) n = n + len(title2) """ 多维度交通心理控制源: 1-5题:其他驾驶员原因 6-9题:自身原因 10-12题:车辆和环境原因 13-16题:命运原因 得分越高表明在个体越容易把交通事故归结为某一因素 """ reason1 = np.array(range(1, 6)) + 31 - 1 reason2 = np.array(range(6, 10)) + 31 - 1
father_factor_all = np.concatenate( (father_factor1, father_factor2, father_factor3, father_factor4, father_factor5, father_factor6, mother_factor1, mother_factor2, mother_factor3, mother_factor4, mother_factor5), axis=0) # print(data["14637李芸"][177:239]) # 记分求和 父母教养方式 n = n + 12 data = th.sum_score(data, father_factor1, mother_factor1, father_factor2, mother_factor2, father_factor3, mother_factor3, father_factor4, mother_factor4, father_factor5, mother_factor5, father_factor6, father_factor_all) # 自我控制量表************************************************************************** reverse_order = np.array([2, 3, 9, 12, 15, 16]) + 147 - 1 data = p.reverce_score(data, reverse_order, 6) control_factor1 = np.array([1, 10, 5, 14]) + 147 - 1 control_factor2 = np.array([4, 13, 15, 16, 6, 11]) + 147 - 1 control_factor3 = np.array([2, 12, 3, 7, 8, 9]) + 147 - 1 control_factor_all = np.concatenate( (control_factor1, control_factor2, control_factor3), axis=0) data = th.sum_score(data, control_factor1, control_factor2, control_factor3, control_factor_all) n = n + 4 # 领悟社会支持************************************************************************** reverse_order = np.array([3, 4, 8, 11, 6, 7, 9, 12, 1, 2, 5, 10]) + 164 - 1 data = p.reverce_score(data, reverse_order, 6) society_factory1 = np.array([3, 4, 8, 11]) + 164 - 1 society_factory2 = np.array([6, 7, 9, 12]) + 164 - 1 society_factory3 = np.array([1, 2, 5, 10]) + 164 - 1 society_factory_all = np.concatenate(