コード例 #1
0
def crawl():
    #initiate own classes
    postgres = postgresdbAccess.postgresAccess()
    trader = tradingEngineAccess.tradingAccess()
    test = validationAccess.liveAccess()
    #connect to binance
    client = Client(apiKey, apiSecret, {'timeout': 600})
    #wait for api to not die
    time.sleep(1)
    #get current market data
    tickers = client.get_ticker()
    #get counts
    countOpen = postgres.sqlQuery("SELECT count(*)" + " FROM " + dbTable +
                                  " WHERE" + " resultpercent IS NULL" +
                                  " AND takeprofit IS NOT NULL;")
    for i in range(len(tickers)):
        intermDict = buildPairDict(tickers, i)
        #dont write data when not usable
        if (intermDict['askPrice'] <= 0 or intermDict['highPrice'] <= 0):
            continue
        if (1.015 >= intermDict['lowPrice'] / intermDict['highPrice'] >= 0.985
                or "UP" in intermDict['symbol']
                or "DOWN" in intermDict['symbol']
                or not intermDict['symbol'].endswith(baseCurrency)):
            continue
        #write intermDict to database
        postgres.insertRow(intermDict)
        #run caluclation
        trader.runCalculation(intermDict)
    #check if any trades meet the conditions to be closed yet
    if countOpen[0][0] > 0:
        test.validate()
    #close database connection
    postgres.databaseClose()
コード例 #2
0
 def validate(self):
     self.postgres = postgresdbAccess.postgresAccess()
     sql = (
         "SELECT id, symbol, takeprofit, stoploss, askprice, positioncost" +
         " FROM " + self.dbTable + " WHERE" + " resultpercent IS NULL " +
         " AND takeprofit IS NOT NULL;")
     self.bA = pd.DataFrame(self.postgres.sqlQuery(sql))
     self.bA[0] = pd.to_numeric(self.bA[0])
     self.bA[2] = pd.to_numeric(self.bA[2])
     self.bA[3] = pd.to_numeric(self.bA[3])
     self.bA[4] = pd.to_numeric(self.bA[4])
     self.bA[5] = pd.to_numeric(self.bA[5])
     for i, row in self.bA.iterrows():
         sql = ("select id, askprice, bidprice from " + self.dbTable +
                " where id > '" + str(self.bA[0][i]) + "' and symbol = '" +
                str(self.bA[1][i]) + "';")
         validated = pd.DataFrame(self.postgres.sqlQuery(sql))
         if len(validated) > 0:
             validated = validated.apply(pd.to_numeric, errors='coerce')
             tpData = validated[validated[1] >= self.bA[2][i]]
             slData = validated[validated[1] <= self.bA[3][i]]
             if (len(slData) > 0 and len(tpData) > 0
                     and slData[0].min() < tpData[0].min()):
                 self.closeTrade(slData, i)
             elif (len(slData) > 0 and len(tpData) > 0
                   and slData[0].min() > tpData[0].min()):
                 self.closeTrade(tpData, i)
             elif len(slData) > 0:
                 self.closeTrade(slData, i)
             elif len(tpData) > 0:
                 self.closeTrade(tpData, i)
     self.postgres.databaseClose()
コード例 #3
0
 def runCalculation(self, tick):
     if tick['symbol'] in [
             "ENJBNB", "AAVEBNB", "NEARBNB", "ROSEBNB", "SOLBNB"
     ]:
         pass
     else:
         return
     self.postgres = postgresdbAccess.postgresAccess()
     sql = ("SELECT id, askprice FROM " + self.dbTable +
            " WHERE symbol LIKE '" + tick['symbol'] +
            "' AND time > NOW() - INTERVAL '24 hours';")
     largeData = pd.DataFrame(self.postgres.sqlQuery(sql))
     #only run calculation if data for 1000 minutes (roughly 18 hours including calc. times ) to not buy ICOs on Biance (usually unprofitable at the beginning).
     if len(largeData) > 1000:
         #convert columns id and askprice to float
         largeData = largeData.apply(pd.to_numeric,
                                     errors='coerce',
                                     downcast='float')
         #calculate diff
         diff = largeData[1].max() - largeData[1].min()
         # calculate fibRetracements
         fibRetracement = pd.DataFrame(self.fibLvl)
         maxAsk = largeData[1].max()
         for lvl in fibRetracement:
             fibRetracement[1] = maxAsk - diff * fibRetracement[0]
             fibRetracement[2] = fibRetracement[1] * 0.999
             fibRetracement[3] = fibRetracement[1] * 1.001
         #see of currently an open trade exists
         sql = (
             "SELECT count(*) FROM " + self.dbTable +
             """ WHERE takeprofit is not null and resultpercent is null and 
                 symbol like '""" + tick['symbol'] + "';")
         #get correlation of id and price
         corValue = largeData[0].corr(largeData[1])
         #get statistical parameters
         statisticsTools = {}
         statisticsTools["stDev"] = statistics.stdev(largeData[1])
         statisticsTools["skew"] = skew(largeData[1])
         statisticsTools["kurtosis"] = kurtosis(largeData[1])
         #if no open trade for symbol exists and price in between 7th fiblvl
         for i in [7, 8, 9]:
             if (int(self.postgres.sqlQuery(sql)[0][0]) == 0
                     and float(tick['askPrice']) <= fibRetracement[3][i]
                     and float(tick['askPrice']) >= fibRetracement[2][i]):
                 self.openTrade(fibRetracement, i, largeData, corValue,
                                tick, statisticsTools)
     self.postgres.databaseClose()
コード例 #4
0
def backtest():
    #initiate empty open positions
    openPositions = {}
    #initiate postgresdb class
    postgres = postgresdbAccess.postgresAccess()
    #get unique simbol list
    sql = ("SELECT distinct symbol FROM " + dbTable + ";")
    uniqueSymbol = pd.DataFrame(postgres.sqlQuery(sql))
    uniqueSymbol = uniqueSymbol[0]
    #initiate empty percent bar
    percentBar = 0
    #loop over every symbol in symbol list
    for symbol in uniqueSymbol:
        #print progress
        print(percentBar, " / ", len(uniqueSymbol))
        percentBar = percentBar + 1
        #skip if symbol is not to be considered
        #null askprice is sorted out with crawler already
        if not (symbol.endswith(baseCurrency) and len(symbol) < 11):
            continue
        #check if open position was left over from last symbol and simulate close
        if openPositions:
            writeTrade(openPositions, row, postgres)
            openPositions = {}
        #query for every line for symbol
        sql = ("SELECT id, time, symbol, askprice, " +
               "bidprice, highprice, quotevolume, " +
               "pricechangepercent, weightedavgprice, openprice" + " FROM " +
               dbTable + " WHERE" + " symbol like '" + symbol +
               "' order by id;")
        print(sql)
        bigData = pd.DataFrame(postgres.sqlQuery(sql))
        bigData[0] = pd.to_numeric(bigData[0],
                                   errors='coerce',
                                   downcast='float')
        bigData[1] = pd.to_datetime(bigData[1])
        bigData[3] = pd.to_numeric(bigData[3],
                                   errors='coerce',
                                   downcast='float')
        bigData[4] = pd.to_numeric(bigData[4],
                                   errors='coerce',
                                   downcast='float')
        bigData[6] = pd.to_numeric(bigData[6],
                                   errors='coerce',
                                   downcast='float')
        bigData[7] = pd.to_numeric(bigData[7],
                                   errors='coerce',
                                   downcast='float')
        bigData[8] = pd.to_numeric(bigData[8],
                                   errors='coerce',
                                   downcast='float')
        bigData[9] = pd.to_numeric(bigData[9],
                                   errors='coerce',
                                   downcast='float')
        #get start of timedelta
        bigData[5] = bigData[1] - timedelta(hours=33)
        #loop over every row
        for index, row in bigData.iterrows():
            before_start_date = bigData[1] <= row[5]
            if len(bigData.loc[before_start_date]) > 0:
                #get data for consideration
                after_start_date = bigData[1] >= row[5]
                before_end_date = bigData[1] <= row[1]
                between_two_dates = after_start_date & before_end_date
                fibDates = bigData.loc[between_two_dates]
                diff = fibDates[3].max() - fibDates[3].min()
                # calculate fibRetracements
                fibRetracement = pd.DataFrame(fibLvl)
                maxAsk = fibDates[3].max()
                for lvl in fibRetracement:
                    fibRetracement[1] = maxAsk - diff * fibRetracement[0]
                    fibRetracement[2] = fibRetracement[1] * 0.999
                    fibRetracement[3] = fibRetracement[1] * 1.001

                #calculate corvalue
                corValue = fibDates[0].corr(fibDates[3])

                #get statistical parameters
                statisticsTools = {}
                statisticsTools["stDev"] = statistics.stdev(fibDates[3])
                statisticsTools["skew"] = skew(fibDates[3])
                statisticsTools["kurtosis"] = kurtosis(fibDates[3])

                #if an open position exists, check if it can be closed
                if openPositions:
                    if (row[3] <= openPositions['stopLoss']
                            or row[3] >= openPositions['takeProfit']):
                        writeTrade(openPositions, row, postgres)
                        #clear open position
                        openPositions = {}
                else:
                    #loop over considered fibonacciretracements
                    for i in [7]:
                        #check if buy requirements are met
                        if (row[7] <= -10):
                            #if (statisticsTools["skew"] <= -0.1 and
                            #    row[3] >= fibRetracement[2][i] and
                            #    row[3] <= fibRetracement[3][i]):
                            openPositions['startId'] = fibDates[0].min()
                            openPositions['id'] = row[0]
                            openPositions['midId'] = fibDates[0].max()
                            openPositions['bidPrice'] = row[4]
                            openPositions['fibLevel'] = i
                            openPositions['symbol'] = symbol
                            openPositions['askPrice'] = row[3]
                            openPositions['corValue'] = corValue
                            openPositions['stDev'] = statisticsTools["stDev"]
                            openPositions['skew'] = statisticsTools["skew"]
                            openPositions['kurtosis'] = statisticsTools[
                                "kurtosis"]
                            openPositions['takeProfit'] = fibRetracement[2][i +
                                                                            5]
                            openPositions['stopLoss'] = fibRetracement[2][i -
                                                                          7]
    #close database connection
    postgres.databaseClose()
コード例 #5
0
def initiateTable():
    postgres = postgresdbAccess.postgresAccess()
    postgres.tableCreate(cols)
    postgres.databaseClose()
    print("SUCCESS: initialteTable()")